K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2018

undefined

18 tháng 3 2018

cam on ban nhe

12 tháng 6 2017

A B C E D H

a)Xét tam giác ABD và tam giác ACE ( đều vuông ) ta có:

       \(AB=AC\left(GT\right)\)

       \(\widehat{A}\) chung

             \(\Rightarrow\Delta ABD=\Delta ACE\)( cạnh huyền góc nhọn )

b)Vì \(\Delta ABD=\Delta ACE\)( cạnh huyền góc nhọn )

            \(\Rightarrow AD=AE\Rightarrow\Delta AED\) cân tại A

c)Xét tam giác AEH và tam giác ADH ( đều vuông ) ta có:

       \(AE=AD\left(GT\right)\)

       Cạnh AH chung

              \(\Rightarrow\Delta AEH=\Delta ADH\)( Cạnh góc vuông cạnh huyền )

               \(\Rightarrow\widehat{EAH}=\widehat{DAH}\)(cặp góc vuông tương ứng)

       \(\Rightarrow\)AH là tia p/giác của tam giác ABC

                     Mà tam giác ABC lại cân

Nên AH cũng là đoạn thẳng trung tuyến, cũng là đoạn thẳng vuông góc ( còn gọi là đường trung trực)

     

a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)

b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có

\(\widehat{EBF}=\widehat{EDC}\)

Do đó: ΔEBF\(\sim\)ΔEDC

d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

DO đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

=>ΔBFC cân tại B

mà BD là đường phân giác

nên BD la đường cao