Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Xét (O) có
ΔABC nội tiếp đường tròn(gt)
nên O là giao điểm ba đường trung trực của ΔABC
hay AO là đường trung trực của BC
⇒AO⊥BC
Ta có: AO⊥BC(cmt)
AO⊥AE(AE là tiếp tuyến có A là tiếp điểm của (O))
Do đó: AE//BC(Định lí 1 từ vuông góc tới song song)
2) Xét ΔADE và ΔCDB có
\(\widehat{ADE}=\widehat{CDB}\)(hai góc đối đỉnh)
DA=DC(D là trung điểm của AC)
\(\widehat{DAE}=\widehat{DCB}\)(hai góc so le trong, AE//BC)
Do đó: ΔADE=ΔCDB(c-g-c)
⇒AE=CB(hai cạnh tương ứng)
Xét tứ giác ABCE có
AE//CB(cmt)
AE=CB(cmt)
Do đó: ABCE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
a . Ta có : \(C\in\left(O\right),AB=2R\Rightarrow\widehat{ACB}=90^0\Rightarrow\Delta ABC\) vuông tại C
c . Vì \(OK\perp BC\Rightarrow B,C\) đối xứng qua OK
\(\Rightarrow\widehat{DCO}=\widehat{DBO}=90^0\Rightarrow DC\) là tiếp tuyến của (O)
d . Ta có \(AC=R\Rightarrow\Delta AOC\) đều
\(\Rightarrow\widehat{COM}=\widehat{MOB}=60^0\Rightarrow\Delta OCM,OMB\) đều
\(\Rightarrow OC=OM=OB=MB=MC\)=> ◊OBMC là hình thoi
e . Ta có :
\(\Delta ACO\) đều
\(\Rightarrow CH==\frac{R\sqrt{3}}{2}\Rightarrow CI=IH=\frac{R\sqrt{3}}{4}\)
\(\Rightarrow\frac{CI}{DB}=\frac{CI}{BC}=\frac{\frac{R\sqrt{3}}{4}}{R\sqrt{3}}=\frac{1}{4}=\frac{AH}{AB}=\frac{EI}{EB}\)
\(\Rightarrow\Delta ECI~\Delta EDB\left(c.g.c\right)\Rightarrow\widehat{CEI}=\widehat{DEB}\Rightarrow E,C,D\) thẳng hàng
Trên nửa mặt phẳng bờ ME chứa S, vẽ tiếp tuyến Ex của đường tròn ngoại tiếp ΔMEF
=>góc SFE=góc MEx
=>góc MES=góc MEx
=>SE trùg với Sx
=>SE là tiếp tuyến của đường tròn ngoại tiếp ΔMEF