K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2017

A B C M N 1 1

Giải:

a) Ta có: \(AB=AC\) ( \(\Delta ABC\) cân tại A )
\(BM=CN\)

\(\Rightarrow AB-BM=AC-CN\)

\(\Rightarrow AM=AN\)

\(\Rightarrow\Delta AMN\) cân tại A ( đpcm )

b) Trong \(\Delta AMN\) có: \(\widehat{A}+\widehat{M_1}+\widehat{N_1}=180^o\)

\(\Rightarrow\widehat{M_1}+\widehat{N_1}=180^o-\widehat{A}\)

\(\widehat{M_1}=\widehat{N_1}\) ( t/g AMN cân tại A )
\(\Rightarrow2.\widehat{N_1}=180^o-\widehat{A}\)

\(\Rightarrow\widehat{N_1}=\frac{180^o-\widehat{A}}{2}\) (1)

Trong \(\Delta ABC\) có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=180^o-\widehat{A}\)

\(\widehat{B}=\widehat{C}\) ( t/g ABC cân tại A )

\(\Rightarrow2.\widehat{C}=180^o-\widehat{A}\)

\(\Rightarrow\widehat{C}=\frac{180^o-\widehat{A}}{2}\) (2)

Từ (1) và (2) \(\Rightarrow\widehat{N_1}=\widehat{C}\)

Mà 2 góc trên ở vị trí đồng vị nên MN // BC ( đpcm )

Vậy...

24 tháng 2 2017

a) Ta có: \(AB-BM=AC-CN\)

\(\Rightarrow AM=AN\)

\(\Rightarrow\Delta AMN\) cân tại A

b) Vì \(\Delta AMN\) cân tại A

\(\Rightarrow\widehat{AMN}=\widehat{ANM}\)

Áp dung tc tổng 3 góc trong 1 t/g ta có:

\(\widehat{AMN}+\widehat{ANM}+\widehat{BAC}=180^o\)

\(\Rightarrow\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\left(1\right)\)

Do \(\Delta ABC\) cân tại A

\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)

Áp dung.....:

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^o\)

\(\Rightarrow\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\left(2\right)\)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

mà 2 góc này ở vị trí đồng vị nên MN // BC.

A B C M N I E F

Bài làm

a) Xét tam giác AMN có:

AM = AN 

=> Tam giác AMN cân tại A.

b) Xét tam giác ABC cân tại A có:

\(\widehat{B}=\frac{180^0-\widehat{A}}{2}\)                                            (1) 

Xét tam giác AMN cân tại A có:

\(\widehat{M}=\frac{180^0-\widehat{A}}{2}\)                                         (2) 

Từ (1)(2) => \(\widehat{B}=\widehat{M}\)

Mà hai góc này ở vị trí đồng vị.

=> MN // BC

c) Xét tam giác ABN và tam giác ACM có:

AN = AM ( gt )

\(\widehat{A}\) chung

AB = AC ( Vì tam giác ABC cân )

=> Tam giác ABN = tam giác ACM ( c.g.c )

=> \(\widehat{ABN}=\widehat{ACM}\)( hai cạnh tương ứng )

Ta có: \(\widehat{ABN}+\widehat{MBC}=\widehat{ABC}\)

          \(\widehat{ACM}+\widehat{MCB}=\widehat{ACB}\)

Mà \(\widehat{ABN}=\widehat{ACM}\)( cmt )

      \(\widehat{ABC}=\widehat{ACB}\)( hai góc kề đáy của tam giác cân )

=> \(\widehat{IBC}=\widehat{ICB}\)

=> Tam giác BIC cân tại I

Vì MN // BC

=> \(\widehat{MNI}=\widehat{IBC}\)( so le trong )

     \(\widehat{NMI}=\widehat{ICB}\)( so le trong )

Và \(\widehat{IBC}=\widehat{ICB}\)( cmt )

=> \(\widehat{MNI}=\widehat{NMI}\)

=> Tam giác MIN cân tại I

d) Xét tam giác cân AMN có:

E là trung điểm của MN

=> AE là trung tuyến  

=> AE là đường trung trực.

=> \(\widehat{AEN}=90^0\)                    (1) 

Xét tam giác cân MNI có:

E là trung điểm MN

=> IE là đường trung tuyến

=> IE là trung trực.                            

=> \(\widehat{IEN}=90^0\)        (2) 

Cộng (1)(2) ta được:\(\widehat{IEN}+\widehat{AEN}=90^0+90^0=180^0\) => A,E,I thẳng hàng.                      (3) 

Xét tam giác cân BIC có:

F là trung điểm BC

=> IF là trung tuyến

=> IF là trung trực.

=> \(\widehat{IFC}=90^0\)                

Và MN // BC

Mà \(\widehat{IFC}=90^0\)

=> \(\widehat{IEN}=90^0\)

=> E,I,F thẳng hàng.             (4) 

Từ (3)(4) => A,E,I,F thẳng hàng. ( đpcm )

# Học tốt #

21 tháng 1 2016

chăng co tam giac vuong can nao ma bm=cn = ab lan sau hoi bai thi hoi dang hoang 

keo lam kho nguoi khac

16 tháng 1 2017

có đấy bạn

10 tháng 7 2019

A B C D H E F M N

CM: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)

=> AD là tia p/giác của \(\widehat{BAC}\)

c) Xét t/giác MEB = t/giác NFC

có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)

  BM = CN (gt)

    \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)

T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 \(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)

=> AH là tia p/giác của \(\widehat{A}\)

Mà AD cũng là tia p/giác của \(\widehat{A}\)

=> AH \(\equiv\) AD 

=> A, D, H thẳng hàng

5 tháng 5 2023

M: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 �^=�^B=C (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  �^=�^B=C (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> ���^=���^BAD=CAD (2 góc t/ứng)

=> AD là tia p/giác của ���^BAC

c) Xét t/giác MEB = t/giác NFC

có: ���^=���^=900BEM=CFN=900 (gt)

  BM = CN (gt)

    �^=�^B=C (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> ���^=���^=1800−�^2AEF=AFE=21800

5 tháng 5 2023

đăng ký kênh MrBeast

 

25 tháng 1 2020

Hình bạn tự vẽ nha :))

a)* Ta có: \(\Delta ABC\)cân tại A <=> AB=AC

\(\hept{\begin{cases}AM=AB+MB\\AN=AC+NC\end{cases}\Rightarrow AM=AN}\)(do \(AB=AC;MB=NC\))

\(\Rightarrow\Delta AMN\)cân tại A

Từ \(\Delta ABC\)cân tại A, có: \(\widehat{ABC}=\frac{180^o-\widehat{A}}{2}\)(1)

Từ \(\Delta AMN\)cân tại A, có: \(\widehat{AMN}=\frac{180^o-\widehat{A}}{2}\)(2)

Từ (1) và (2), suy ra: \(\widehat{ABC}=\widehat{AMN}\)

\(\Rightarrow MN//BC\)(2 góc đồng vị bằng nhau)

b) Xét \(\Delta ABI\)và \(\Delta ACI\)có:

\(\hept{\begin{cases}AB=AC\\AIchung\\IB=IC\end{cases}\Rightarrow\Delta ABI=\Delta}ACI\left(ccc\right)\)

\(\Rightarrow\widehat{BAI}=\widehat{CAI}\)(2 góc tương ứng)      

\(\Rightarrow AI\)là p/giác của \(B\widehat{A}C\) (3)

Tương tự, ta có: \(\widehat{MAE}=\widehat{NAE}\)

\(\Rightarrow AE\)là p/ giác của \(\widehat{BAC}\)(4)

Từ (3) và (4), ta có: A,I,E thẳng hàng