Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
Xét tg ABM và tg ACM có
MB=MC (đề bài)
AB=AC (Do tg ABC cân tại A)
\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)
=> tg ABM=tg ACM (c.g.c)
Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)
b/
Xét tg vuông BME và tg vuông CMF có
MB=MC
\(\widehat{ABC}=\widehat{ACB}\)
=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M
c/
Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)
Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)
\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )
=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\) (Trong tg can EMF đường phân giác đồng thời là đường cao)
Mà \(AM\perp BC\)
=> EF//BC (cùng vuông góc với AM)
xét 2 tam giác ABM=tam giác ACM(c.c.c)(tự cm)
nên góc AMB=góc AMC=180ddooj /2=90 độ
suy ra AM vuông góc vs BC
a) Xét ΔAMBΔAMBvà ΔAMCΔAMCcó :
AM ( cạnh chung )
AB = AC ( gt )
MB = MC ( gt )
Suy ra : ΔAMBΔAMB= ΔAMCΔAMC( c.c.c )
⇒⇒ˆAMB=ˆAMCAMB^=AMC^( hai cạnh tương ứng ) mà ˆAMB+ˆAMC=180oAMB^+AMC^=180o
⇒⇒ˆAMB=ˆAMC=ˆBMC2=90oAMB^=AMC^=BMC^2=90o⇒⇒AM ⊥⊥BC
b) Xét ΔADFΔADFvà ΔCDEΔCDEcó :
DE = DF ( gt )
ˆEDC=ˆFDAEDC^=FDA^( hai góc đối đỉnh )
DA = DC ( gt )
Suy ra : ΔADFΔADF= ΔCDEΔCDE( c.g.c )
⇒ˆFAD=ˆECD⇒FAD^=ECD^( hai góc tương ứng )
Mà hai góc này ở vị trí so le trong nên AF // EC
c) gọi H là giao điểm của BD và AE
Xét ΔAHDΔAHDvuông tại H có : ˆHAD+ˆADH=90oHAD^+ADH^=90o( 1 )
Xét ΔBADΔBAD vuông tại A có : ˆABD+ˆBDA=90oABD^+BDA^=90o( 2 )
Từ ( 1 ) và ( 2 ) ⇒ˆHAD=ˆABD⇒HAD^=ABD^
Xét ΔBADΔBADvà ΔACGΔACGcó :
ˆDBA=ˆGACDBA^=GAC^( cmt )
AB = AC ( gt )
ˆBAD=ˆACGBAD^=ACG^( = 90o90o)
Suy ra : ΔBADΔBAD= ΔACGΔACG( g.c.g )
⇒AD=CG⇒AD=CG( hai cạnh tương ứng )
Mà AD=DC=AC2AD=DC=AC2
⇒CG=AC2=AB2⇒CG=AC2=AB2( vì AB = AC )
⇒AB=2CG
A B C M E F
a/ Ta có :
\(\Delta ABC\) cân tại A
Lại có : AM là đường trung tuyến ứng với BC
\(\Leftrightarrow AM\) là đường trung trực của BC (đpcm)
b/ \(\Delta BEM=\Delta CFM\left(ch-gn\right)\)
\(\Leftrightarrow ME=MF\) (đpcm)
Ta có : +) \(AB=AE+EB\) (E nằm ~ A và B)
\(AC=AF+FC\) (F nằm giữa A và C)
Mà AB = AC; EB = EC do \(\Delta BEM=\Delta CFM\)
\(\Leftrightarrow AE=À\)F
Lại có : ME = MF
\(\Leftrightarrow AM\) là đường trung trực của EF
a) \(\Delta ABC\) cân tại A mà AM là trung tuyến của BC
=> AM là trung trực của BC ( tính chất tam giác cân )
b) \(\Delta ABC\) cân tại A mà AM là trung trực của BC
=> AM là phân giác của góc A
Xét tam giác EAM và tam giác FAM
\(\widehat{AEM}=\widehat{ÀFM}=90^0\)
AM chung
\(\widehat{FAM}=\widehat{EAM}\) (AM là phân giác của góc A)
=> \(\Delta\) vuông EAM =\(\Delta\) vuông FAM ( cạnh huyền -góc nhọn )
=> AE =AF ( 2 cạnh tương ứng )
=> \(\Delta AEF\) cân tại A mà AM là phân giác của góc A
=> AM là trung trực của EF ( tính chất tam giác cân )