\(\perp\)AB , MF
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2018

A B C M E F

a/ Ta có :

\(\Delta ABC\) cân tại A

Lại có : AM là đường trung tuyến ứng với BC

\(\Leftrightarrow AM\) là đường trung trực của BC (đpcm)

b/ \(\Delta BEM=\Delta CFM\left(ch-gn\right)\)

\(\Leftrightarrow ME=MF\) (đpcm)

Ta có : +) \(AB=AE+EB\) (E nằm ~ A và B)

\(AC=AF+FC\) (F nằm giữa A và C)

Mà AB = AC; EB = EC do \(\Delta BEM=\Delta CFM\)

\(\Leftrightarrow AE=À\)F

Lại có : ME = MF

\(\Leftrightarrow AM\) là đường trung trực của EF

9 tháng 6 2018

a) \(\Delta ABC\) cân tại A mà AM là trung tuyến của BC

=> AM là trung trực của BC ( tính chất tam giác cân )

b) \(\Delta ABC\) cân tại A mà AM là trung trực của BC

=> AM là phân giác của góc A

Xét tam giác EAM và tam giác FAM

\(\widehat{AEM}=\widehat{ÀFM}=90^0\)

AM chung

\(\widehat{FAM}=\widehat{EAM}\) (AM là phân giác của góc A)

=> \(\Delta\) vuông EAM =\(\Delta\) vuông FAM ( cạnh huyền -góc nhọn )

=> AE =AF ( 2 cạnh tương ứng )

=> \(\Delta AEF\) cân tại A mà AM là phân giác của góc A

=> AM là trung trực của EF ( tính chất tam giác cân )

13 tháng 2 2018

cứ tra mạng là có ngay ak

t nghĩ chắc là cs đây !!

18 tháng 3 2021

a/

Xét tg ABM và tg ACM có

MB=MC (đề bài)

AB=AC (Do tg ABC cân tại A)

\(\widehat{ABC}=\widehat{ACB}\) (Do tg ABC cân tại A)

=> tg ABM=tg ACM (c.g.c)

Ta có MB=MC => AM là trung tuyến của tg ABC => \(AM\perp BC\) (trong tg cân đường trung tuyến đồng thời là đường cao)

b/

Xét tg vuông BME và tg vuông CMF có

MB=MC

\(\widehat{ABC}=\widehat{ACB}\)

=> tg BME = tg CMF (hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau) => ME=MF => tg EMF cân tại M

c/

Do \(AM\perp BC\Rightarrow\widehat{AMB}=\widehat{AMC}=90^o\)

Do tg BME = tg CMF \(\Rightarrow\widehat{BME}=\widehat{CME}\)

\(\Rightarrow\widehat{AME}=\widehat{AMF}\) (cungf phụ với \(\widehat{BME}\) = \(\widehat{CMF}\) )

=> AM là phân giác của \(\widehat{FME}\Rightarrow AM\perp EF\)  (Trong tg can EMF đường phân giác đồng thời là đường cao)

Mà \(AM\perp BC\)

=> EF//BC (cùng vuông góc với AM)

11 tháng 1 2019

xét 2 tam giác ABM=tam giác ACM(c.c.c)(tự cm)

nên góc AMB=góc AMC=180ddooj /2=90 độ

suy ra AM vuông góc vs BC

10 tháng 1 2021

a) Xét ΔAMBΔAMBvà ΔAMCΔAMCcó :

AM ( cạnh chung )

AB = AC ( gt )

MB = MC ( gt )

Suy ra : ΔAMBΔAMBΔAMCΔAMC( c.c.c )

⇒⇒ˆAMB=ˆAMCAMB^=AMC^( hai cạnh tương ứng ) mà ˆAMB+ˆAMC=180oAMB^+AMC^=180o

⇒⇒ˆAMB=ˆAMC=ˆBMC2=90oAMB^=AMC^=BMC^2=90o⇒⇒AM ⊥⊥BC

b) Xét ΔADFΔADFvà ΔCDEΔCDEcó :

DE = DF ( gt )

ˆEDC=ˆFDAEDC^=FDA^( hai góc đối đỉnh )

DA = DC ( gt )

Suy ra : ΔADFΔADFΔCDEΔCDE( c.g.c )

⇒ˆFAD=ˆECD⇒FAD^=ECD^( hai góc tương ứng )

Mà hai góc này ở vị trí so le trong nên AF // EC

c) gọi H là giao điểm của BD và AE

Xét ΔAHDΔAHDvuông tại H có : ˆHAD+ˆADH=90oHAD^+ADH^=90o( 1 )

Xét ΔBADΔBAD vuông tại A có : ˆABD+ˆBDA=90oABD^+BDA^=90o( 2 )

Từ ( 1 ) và ( 2 ) ⇒ˆHAD=ˆABD⇒HAD^=ABD^

Xét ΔBADΔBADvà ΔACGΔACGcó :

ˆDBA=ˆGACDBA^=GAC^( cmt )

AB = AC ( gt )

ˆBAD=ˆACGBAD^=ACG^( = 90o90o)   

Suy ra : ΔBADΔBADΔACGΔACG( g.c.g )

⇒AD=CG⇒AD=CG( hai cạnh tương ứng )

Mà AD=DC=AC2AD=DC=AC2

⇒CG=AC2=AB2⇒CG=AC2=AB2( vì AB = AC )

⇒AB=2CG

11 tháng 1 2021

mk chưa hok tam giác cân

16 tháng 2 2019