Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, BH = AK:
Ta có: ΔABC vuông cân tại A.
=> A1ˆ=A2ˆ=90oA1^=A2^=90o (1)
Cũng có: BH ⊥ AE.
=> ΔBAH vuông tại H.
=> B1ˆ+A2ˆ=90oB1^+A2^=90o (2)
Từ (1) và (2) => A1ˆ=B1ˆA1^=B1^.
Xét ΔBAH và ΔACK có:
+ AB = AC (ΔABC cân)
+ H1ˆ=K1ˆ=90oH1^=K1^=90o (CK ⊥ AE, BH ⊥ AE)
+ A1ˆ=B1ˆ=(cmt)A1^=B1^=(cmt)
=> ΔBAH = ΔACK (cạnh huyền - góc nhọn)
=> BH = AK (2 cạnh tương ứng)
b, ΔMBH = ΔMAK:
Ta có: BH ⊥ AK; CK ⊥ AE.
=> BH // CK.
=> HBMˆ=MCKˆHBM^=MCK^ (2 góc so le trong) [1]
Mà MAEˆ+AEMˆ=90oMAE^+AEM^=90o [2]
Và MCKˆ+CEKˆ=90oMCK^+CEK^=90o [3]
AEMˆ=CEKˆAEM^=CEK^ (đối đỉnh) [4]
Từ [1], [2], [3] và [4] => MAEˆ=ECKˆMAE^=ECK^ [5]
Từ [1] và [5] => HBMˆ=MAKˆHBM^=MAK^.
Ta có: AM là trung tuyến của tam giác vuông ABC nên AM = BM = MC = 1212BC.
Xét ΔMBH và ΔMAK có:
+ MA = MB (cmt)
+ HBMˆ=MAKˆHBM^=MAK^ (cmt)
+ BH = AK (câu a)
=> ΔMBH = ΔMAK (c - g - c)
c, ΔMHK vuông cân:
Xét ΔAMH và ΔCMK có:
+ AH = CK (ΔABH = ΔCAK)
+ MH = MK (ΔMBH = ΔMAK)
+ AM = CM (AM là trung tuyến)
=> ΔAMH = ΔCMK (c - c - c)
=> AMHˆ=CMKˆAMH^=CMK^ (2 góc tương ứng)
mà AMHˆ+HMCˆ=90oAMH^+HMC^=90o
=> CMKˆ+HMCˆ=90oCMK^+HMC^=90o
hay HMKˆ=90oHMK^=90o.
ΔHMK có MK = MH và MHKˆ=90oMHK^=90o.
=> ΔHMK vuông cân tại M.
chúc bạn học tốt
a: ΔACB vuông tại A
mà AD là trung tuyến
nên AD=DC=BD=1/2BC
Xét ΔABH vuông tại H và ΔCAK vuông tại K có
AB=CA
góc HAB=góc KCA
=>ΔABH=ΔCAK
=>AH=CK
b: Xét ΔDCK và ΔDAH có
góc CDK=góc ADH(góc CDA=góc ADB)
DC=DA
góc DCK=góc DAH
=>ΔDCK=ΔDAH
b: Ta có: ΔABC cân tại A
mà AE là đường trung tuyến
nên AE là đường cao
a: Xét ΔAHB vuông ạti H và ΔAKC vuông tại K có
AB=AC
góc BAH chung
=>ΔAHB=ΔAKC
=>AH=AK
b: Xét ΔAKI vuông tại K và ΔAHI vuông tại H co
AI chung
AK=AH
=>ΔAKI=ΔAHI
=>IH=IK
=>AI là trung trực của KI
c: góc EBC+góc ABC=90 độ
góc HBC+góc ACB=90 độ
góc ABC=góc ACB
=>góc EBC=góc HBC
=>BC là phân giác của góc HBE
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
góc H = góc C (= 90°)
AB = AC (T.g ABC vuông cân)
góc ABH = góc CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>góc HBM = góc MCK (So Le Ttrong)(1)
Mặt khác góc MAE + góc AEM = 90°(2)
Và góc MCK + góc CEK = 90°(3)
Và góc AEM = góc CEK (4)
Từ 2,3,4 => góc MAE = góc ECK (5)
Từ 1,5 => góc HBM = góc MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét tam giác MBH và tam giác MAK có:
MB = AM (cmt)
góc HBM = góc MAK(cmt)
BH = AK (cmt)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên tam giác AMH = tam giác CMK (c.c.c)
=> góc AMH = góc CMK; mà góc AMH + góc HMC = 90 độ
=> góc CMK + góc HMC = 90° hay góc HMK = 90°
Tam giác HMK có MK = MH và góc HMK = 90° nên vuông cân tại M (đpcm).
Đầu bài thiếu rồi nhá