K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔCDM có 

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔABM=ΔCDM

b: Ta có: ΔABM=ΔCDM

nên \(\widehat{ABM}=\widehat{CDM}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

a: Xét ΔBMC và ΔDMA có

MB=MD

góc BMC=góc DMA

MC=MA

=>ΔBMC=ΔDMA

=>góc MBC=góc MDA

=>BC//AD

b: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hbh

=>AB=CD

=>CD=CA

=>ΔCAD cân tại C

c: Xét ΔEBD có

EM là trung tuyến

EC=2/3EM

=>C là trọng tâm

=>DC đi qua trung điểm của BE

a) Xét ΔABM và ΔCDM có 

MA=MC(M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD(gt)

Do đó: ΔABM=ΔCDM(c-g-c)

b) Ta có: ΔABM=ΔCDM(cmt)

nên \(\widehat{ABM}=\widehat{CDM}\)(hai góc tương ứng)

mà \(\widehat{ABM}\) và \(\widehat{CDM}\) là hai góc ở vị trí so le trong

nên AB//CD(Dấu hiệu nhận biết hai đường thẳng song song)

c) Xét ΔDBN có 

M là trung điểm của BD(gt)

C là trung điểm của DN(gt)

Do đó: MC là đường trung bình của ΔDBN(Định nghĩa đường trung bình của tam giác)

Suy ra: MC//BN(Định lí 2 đường trung bình của tam giác)

hay BN//AC(đpcm)

a) Ta có: AM+MB=AB(M nằm giữa hai điểm A và B)

AN+NC=AC(N nằm giữa A và C)

mà MB=NC(gt)

và AB=AC(ΔABC cân tại A)

nên AM=AN

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAMN cân tại A(cmt)

nên \(\widehat{AMN}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{ABC}\)

b) Ta có: \(\widehat{AMN}=\widehat{ABC}\)(cmt)

mà hai góc này là hai góc ở vị trí đồng vị

nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)

Xét tứ giác MNBC có MN//BC(cmt)

nên MNBC là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

Hình thang MNBC(MN//BC) có \(\widehat{MBC}=\widehat{NCB}\)(ΔABC cân tại A)

nên MNBC là hình thang cân(Dấu hiệu nhận biết hình thang cân)

 

c) Xét ΔAMN có 

E là trung điểm của AM(gt)

F là trung điểm của AN(gt)

Do đó: EF là đường trung bình của ΔAMN(Định nghĩa đường trung bình của hình thang)

Suy ra: EF//MN và \(EF=\dfrac{MN}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà MN//BC(cmt)

nên EF//BC(3)

Xét hình thang MNCB(MN//CB) có 

H là trung điểm của MB(gt)

G là trung điểm của NC(gt)

Do đó: HG là đường trung bình của hình thang MNCB(Định nghĩa đường trung bình của hình thang)

Suy ra: HG//MN//BC và \(HG=\dfrac{MN+BC}{2}\)(Định lí 4 về đường trung bình của hình thang)(4)

Từ (3) và (4) suy ra EF//HG

Ta có: HG//BC(cmt)

nên \(\widehat{EHG}=\widehat{ABC}\) và \(\widehat{FGH}=\widehat{ACB}\)(Các cặp góc đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)

nên \(\widehat{EHG}=\widehat{FGH}\)

Xét tứ giác EFGH có EF//HG(cmt)

nên EFGH là hình thang có hai đáy là EF và HG(Định nghĩa hình thang)

Hình thang EFGH(EF//HG) có \(\widehat{EHG}=\widehat{FGH}\)(cmt)

nên EFGH là hình thang cân(Dấu hiệu nhận biết hình thang cân)

23 tháng 11 2023

1: Xét tứ giác ABNC có

M là trung điểm chung của AN và BC

nên ABNC là hình bình hành

Hình bình hành ABNC có \(\widehat{BAC}=90^0\)

nên ABNC là hình chữ nhật

2:

a: Xét ΔABC có

M là trung điểm của BC

MH//AB

Do đó: H là trung điểm của AC

b: ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5\left(cm\right)\)

Xét tứ giác AMCE có

H là trung điểm chung của AC và ME

nên AMCE là hình bình hành

Hình bình hành AMCE có MA=MC

nên AMCE là hình thoi

=>\(C_{AMCE}=4\cdot AM=4\cdot2,5=10\left(cm\right)\)

3: Xét ΔNAB có

M,K lần lượt là trung điểm của NA,NB

=>MK là đường trung bình của ΔNAB

=>\(MK=\dfrac{AB}{2}\)

AMCE là hình thoi

=>AE//CM và AE=CM

AE//CM

\(M\in BC\)

Do đó: AE//BM

AE=CM

CM=BM

Do đó: AE=BM

Xét tứ giác ABME có

AE//MB

AE=MB

Do đó: ABME là hình bình hành

=>ME=AB

mà MK=1/2AB

nên \(\dfrac{ME}{MK}=1:\dfrac{1}{2}=2\)

=>ME=2MK

Bài 1 :Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.a/. Ch/m : ΔAMB = ΔNMCb/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.Ch/m : BI = CN.BÀI 2 :Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE...
Đọc tiếp

Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC

b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.

c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.

Ch/m : BI = CN.

BÀI 2 :

Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC

a) Chứng minh BE = DC

b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.

c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.

Bài 3

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

Bài 4.

Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :

a) Tam giác AIB bằng tam giác CID.

b) AD = BC v à AD // BC.

BÀI 4

Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.

a) Chứng minh ΔAHB = ΔDBH.

b) Chứng minh AB//HD.

c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.

d) Tính góc ACB , biết góc BDH= 350 .

Bài 5 :

Cho tam giác ABC cân tại A và có \widehat{A}=50^0  .

Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :

Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.

Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7

Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.

Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :

Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :

Tam giác ACE đều.
A, E, F thẳng hàng.

1

Bài 3: 

a: Xét ΔAIB và ΔCID có

IA=IC

góc AIB=góc CID

IB=ID

Do đó: ΔAIB=ΔCID

b: Xét tứ giác ABCD có

I là trung điểm chung của AC và BD

nên ABCD là hình bình hành

Suy ra: AD//BC va AD=BC

Bài 6: 

a: Xét ΔADB và ΔAEC có

AD=AE
góc A chung

AB=AC

Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có

EB=DC

BC chung

EC=BD

Do đó: ΔEBC=ΔDCB

Suy ra: góc OBC=góc OCB

=>ΔOBC cân tại O

=>OB=OC

=>OE=OD

=>ΔOED cân tại O

c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC