Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AHMK có
\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)
Do đó; AHMK là hình chữ nhật
Xét tứ giác AHMK có
\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)
Do đó: AHMK là hình chữ nhật
mà AM là tia phân giác
nên AHMK là hình vuông
a) Do MH ⊥ AB (gt)
⇒ ∠AHM = 90⁰
Do MK ⊥ AC (gt)
⇒ ∠AKM = 90⁰
Tứ giác AHMK có:
∠AHM = ∠HAK = ∠AKM = 90⁰
⇒ AHMK là hình chữ nhật
b) AB = AC (gt)
⇒ ∆ABC vuông cân tại A
AM là đường trung tuyến
⇒ AM cũng là đường phân giác của ∆BAC
⇒ AM là đường phân giác của ∠HAK
Ta có:
AHMK là hình chữ nhật (cmt)
AM là đường phân giác của ∠HAK (cmt)
⇒ AHMK là hình vuông
a: Xét tứ giác AHMK có
\(\widehat{AHM}=\widehat{AKM}=\widehat{KAH}=90^0\)
Do đó: AHMK là hình chữ nhật