K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{EBC}=\dfrac{\widehat{ABC}}{2}\)

\(\widehat{DCB}=\dfrac{\widehat{ACB}}{2}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{EBC}=\widehat{DCB}\)

Xét ΔDBC và ΔECB có 

\(\widehat{DBC}=\widehat{ECB}\)

 BC chung

\(\widehat{DCB}=\widehat{EBC}\)

Do đo: ΔDBC=ΔECB

b: Xét ΔBEF có \(\widehat{EBF}=\widehat{EFB}\left(=\widehat{DCB}\right)\)

nên ΔBEF cân tại E

29 tháng 12 2023

a: Ta có: \(\widehat{ABC}+\widehat{ABM}=180^0\)(hai góckề bù)

\(\widehat{ACB}+\widehat{ACN}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{ABM}=\widehat{ACN}\)

Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

=>AM=AN

=>ΔAMN cân tại A

b: Xét ΔBME vuông tại E và ΔCNF vuông tại F có

BM=CN

\(\widehat{BME}=\widehat{CNF}\)(ΔABM=ΔACN)

Do đó: ΔBME=ΔCNF

c: Ta có: ΔBME=ΔCNF

=>ME=NF

Ta có: AE+EM=AM

AF+FN=AN

mà AM=AN và ME=NF

nên AE=AF

Xét ΔAEO vuông tại E và ΔAFO vuông tại F có

AO chung

AE=AF

Do đó: ΔAEO=ΔAFO

=>\(\widehat{EAO}=\widehat{FAO}\)

=>\(\widehat{MAO}=\widehat{NAO}\)

=>AO là phân giác của góc MAN

d: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

AM=AN

Do đó: ΔAMH=ΔANH

=>\(\widehat{MAH}=\widehat{NAH}\)

=>AH là phân giác của góc MAN

mà AO là phân giác của góc MAN

nên A,O,H thẳng hàng

Bài 1:Cho tam giác ABC, M là trung điểm của BC và MA = MB = MC. CMR : tam giác ABC là tam giác vuông Bài 2:Cho tam giác ABC có góc B = 70 độ; góc C = 30 độ. Tia phân giác của góc A cắt BC ở D. Đường thẳng đi qua C và song song với AB cắt AD ở E. Trong hình vẽ có các tam giác cân nào? Vì sao?  Bài 3:Cho tam giác ABC vuông cân tại A. Tia phân giác của góc A cắt BC ở D. Lấy điểm E trên cạnh AB, điểm F trên...
Đọc tiếp

Bài 1:

Cho tam giác ABC, M là trung điểm của BC và MA = MB = MC. 

CMR : tam giác ABC là tam giác vuông

 

Bài 2:

Cho tam giác ABC có góc B = 70 độ; góc C = 30 độ. Tia phân giác của góc A cắt BC ở D. Đường thẳng đi qua C và song song với AB cắt AD ở E. Trong hình vẽ có các tam giác cân nào? Vì sao? 

 

Bài 3:

Cho tam giác ABC vuông cân tại A. Tia phân giác của góc A cắt BC ở D. Lấy điểm E trên cạnh AB, điểm F trên cạnh AC sao cho AE = CF.

CMR : a) ADB, ADC là tam giác vuông cân

b) tam giác DEF cũng là tam giác vuông cân

 

Bài 4:

Cho tam giác ABC cân tại A, góc A = 20 độ và tam giác EBC đều ( A và E thuộc cùng 1 nửa mặt phẳng bờ BC ). Tia phân giác của góc ABE cắt AC ở D

CMR : a) AE là tia phân giác của góc A

b) AD = BC

 

GIÚP TỚ NHA!!!!!

*À!! Vẽ hình giùm tớ lun nhá <3*

0
  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC...
Đọc tiếp

  1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là  2 tia phân giác của góc  xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC  cân tại A, trên tia đối của tia  BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD  (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB,  EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC

1
26 tháng 2 2021

Giải:

a)Vì tam giác ABC cân tại A=> <ABC=<ACB và AB=AC (dấu "<" trước tên góc là kí hiệu của góc nha)

Xét tam giác AMB và tam giác AMC có:

+<MAC=<MAB(AM là phân giác của <BAC)

+AB=AC(cmt)

+AM chung

=>tam giác AMB=tam giác AMC(g.c.g)

b)Xét tam giác AEM và tam giác AFM có:

+AM chung

+<MAE=<MAP(AM là phân giác của <BAC)

+<AEM=<APM=90°(gt)

=>tam giác AEM=tam giác AFM (ch-gn)

=>AE=AF(2 cạnh tương ứng)

=>tam giác AFE là tam giác cân.

26 tháng 2 2021

A B C M E F

a,Xét ∆AMB và ∆AMC có :

AB = AC (giả thiết)

∠BAM = ∠CAM (giả thiết)

AM chung

=> ∆AMB = ∆AMC (c.g.c)

b, Xét 2 tam giác vuông AME và AMF có :

AM chung

∠EAM = ∠FAM (giả thiết)

=> ∆AME = ∆AMF (cạnh huyền - góc nhọn)

=> AE = AF (cặp cạnh tương ứng)

=> ∆AFE cân tại A