K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

câu b là tpg của góc ABC ...... chứng minh góc ABM= góc ACM

7 giờ trước (10:58)

Câu a: Chứng minh tam giác ABH = tam giác ACH

Ta có tam giác ABC cân tại A, tức là ( AB = AC ).
Điểm ( H ) là trung điểm của đoạn ( BC ), nên ( BH = HC ).
Xét hai tam giác ( ABH ) và ( ACH ):

  • ( AB = AC ) (giả thiết tam giác ABC cân tại A).
  • ( BH = HC ) (do ( H ) là trung điểm của ( BC )).
  • ( \angle ABH = \angle ACH ) (đối đỉnh).
    Vậy theo cạnh - góc - cạnh (c.g.c), ta có:
    [ \triangle ABH = \triangle ACH ]

Câu b: Chứng minh ( \angle ABM = \angle ACM ) và tam giác MBC cân

  • Vì ( M ) nằm trên tia phân giác của góc ( ABC ), ta có: [ \angle ABM = \angle CBM ]
  • Mặt khác, do tam giác ( ABH ) và ( ACH ) bằng nhau (chứng minh ở câu a), nên: [ \angle CBM = \angle ACM ] Suy ra:
    [ \angle ABM = \angle ACM ]
  • Xét tam giác ( MBC ):
  • ( \angle CBM = \angle BCM ) (do ( M ) nằm trên tia phân giác của ( \angle ABC )).
  • ( MB = MC ) (cạnh đối diện hai góc bằng nhau).
    Vậy tam giác ( MBC ) cân tại ( M ).

Câu c: Chứng minh ( AB = AN )

  • Do đường thẳng đi qua ( A ) song song với ( BC ) cắt tia ( BM ) tại ( N ), ta có:
    [ AN \parallel BC ]
  • Xét tam giác ( ABN ), có ( AN \parallel BC ) nên theo định lý đường trung bình của tam giác, ta có:
    [ AB = AN ]

Câu d: Chứng minh ( MC \perp CN )

  • Từ câu b, tam giác ( MBC ) cân tại ( M ) nên ( MC = MB ).
  • Do ( AN \parallel BC ), nên góc ( MCN ) bằng góc ( NBC ).
  • Mà ( \angle NBC = 90^\circ ) (do đường thẳng ( AN ) song song với ( BC )).
  • Vậy suy ra ( MC \perp CN ).
1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.a) Chứng minh: Tam giác BAD = Tam giác BMDb) Chứng minh: DM vuông góc BCc) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DMd) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.2) Cho tam giác ABC...
Đọc tiếp

1) Cho tam giác ABC vuông tại A, vẽ tia phân giác của \(\widehat{ABC}\)cắt AC tại D. Trên cạnh BC lấy M sao cho BA = BM.

a) Chứng minh: Tam giác BAD = Tam giác BMD

b) Chứng minh: DM vuông góc BC

c) Trên nửa mặt phẳng bờ AB không chứa C vẽ tia song song với CA. Trên tia Bx lấy điểm K sao cho BK = AC. Chứng minh: AK vuông góc DM

d) Trên tia BA lấy điểm N sao cho BN = BC. Chứng minh: 3 điểm M, D, N thẳng hàng.

2) Cho tam giác ABC có AB < AC. Trên tia AC lấy E sao cho: AE = AB. Gọi H là trung điểm của BE.

a) Chứng minh: AH là tia phân giác của \(\widehat{A}\)

b) Gọi D là giao của AH và BC; Chứng minh: BD = DE

c) Qua E vẽ đường thẳng song song với AD cắt BC tại M. Tính số đo \(\widehat{BEM}\)

d) Trên tia đối của tia BA lấy N sao cho: BN = CE. Chứng minh: 3 điểm E, D, N thẳng hàng

Mong các bạn giúp đỡ!

0