Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu a: Chứng minh tam giác ABH = tam giác ACH
Ta có tam giác ABC cân tại A, tức là ( AB = AC ).
Điểm ( H ) là trung điểm của đoạn ( BC ), nên ( BH = HC ).
Xét hai tam giác ( ABH ) và ( ACH ):
- ( AB = AC ) (giả thiết tam giác ABC cân tại A).
- ( BH = HC ) (do ( H ) là trung điểm của ( BC )).
- ( \angle ABH = \angle ACH ) (đối đỉnh).
Vậy theo cạnh - góc - cạnh (c.g.c), ta có:
[ \triangle ABH = \triangle ACH ]
Câu b: Chứng minh ( \angle ABM = \angle ACM ) và tam giác MBC cân
- Vì ( M ) nằm trên tia phân giác của góc ( ABC ), ta có: [ \angle ABM = \angle CBM ]
- Mặt khác, do tam giác ( ABH ) và ( ACH ) bằng nhau (chứng minh ở câu a), nên: [ \angle CBM = \angle ACM ] Suy ra:
[ \angle ABM = \angle ACM ] - Xét tam giác ( MBC ):
- ( \angle CBM = \angle BCM ) (do ( M ) nằm trên tia phân giác của ( \angle ABC )).
- ( MB = MC ) (cạnh đối diện hai góc bằng nhau).
Vậy tam giác ( MBC ) cân tại ( M ).
Câu c: Chứng minh ( AB = AN )
- Do đường thẳng đi qua ( A ) song song với ( BC ) cắt tia ( BM ) tại ( N ), ta có:
[ AN \parallel BC ] - Xét tam giác ( ABN ), có ( AN \parallel BC ) nên theo định lý đường trung bình của tam giác, ta có:
[ AB = AN ]
Câu d: Chứng minh ( MC \perp CN )
- Từ câu b, tam giác ( MBC ) cân tại ( M ) nên ( MC = MB ).
- Do ( AN \parallel BC ), nên góc ( MCN ) bằng góc ( NBC ).
- Mà ( \angle NBC = 90^\circ ) (do đường thẳng ( AN ) song song với ( BC )).
- Vậy suy ra ( MC \perp CN ).

a/ Xét T/g ABH và T/g ACH ta có :
+ AB = AC ( T/g ABC cân tại A )
+ BH = CH ( H là trung điểm BC )
+ Góc ABH = ACH ( T/g ABC cân tại A )
=> T/g ABH = T/g ACH (C.g.c)
b/Xét T/g ABM và T/g ACM ta có
+ Ab = Ac ( T/g ABC cân tại A )
+ AM chung
+ BAM = CAM ( T/g ABH = T/g ACH )
=> T/g ABM = T/g ACM (C.g.c)
- Ta có :
BM = CM ( T/g ABM = T/g ACM)
=> T/g MBC cân tại M

a) Xét \(\Delta ABH\)và \(\Delta ACH\)có:
\(AB=AC\)(gt)
\(\widehat{ABH}=\widehat{ACH}\)(gt)
\(BH=CH\)(gt)
suy ra: \(\Delta ABH=\Delta ACH\)(c.g.c)

a) xét tam giác ABH và tam giác ACH có
Góc AHB =Góc AHC =90 độ
AB =AC ( do tam giác abc cân)
Góc B = góc C (do tam giác abc cân)
=> tam giác ABH = tam giác ACH ( cạnh huyền, góc nhọn)
=>HB= HC (hai cạnh tương ứng bằng nhau)
b) Xét tam giác MAK và tam giác MCK có
AK=KH( gì)
Góc AKB = GÓC CKB=90 độ
MK chung
=>tam giác MAK = tam giác MCK( c. g. c)
=> MA=CM( hai cạnh tương ứng)
c) từ tam giác mak = tam giác MCK ( câu b)
=>góc MAK = góc C (..)
TA CÓ tam giác abc cân ở A =>góc B = góc C
=>góc Abc = góc Mak
d) cậu xem lại đề phần này đi nha mik thấy nó sai cái j đó
Có ΔABC cân ở A
=> AB = AC
H là trung điểm BC
=> HB = HC
Xét Δ AHB và ΔAHC có :
AB = AC ( cmt )
HB = HC ( cmt )
AH chung
=> ΔAHB = ΔAHC ( c.c.c)
Xét tam giác ABH và tam giác AHC
Ta có AB=AC( tam giác ABC cân tại A)
AH là cạnh chung
BH=HC(gt)
Do đó tam giác ABH= tam giác ACH(c.c.c)
suy ra BAH=HAC(2 góc tương ứng)
hay BAM=CAM
Xét tam giác ABM và tam giác AMC
Ta có AB=AC(cmt)
AM là cạnh chung
BAM=CAM(cmt)
Do đó tam giác ABM=tam giác ACM( c.g.c)
suy ra BM=MC( 2 cạnh tương ứng)
suy ra tam giác MBC cân tại M
Lại có ANB=MBC(AN song song với BC)
Mà MBC=MBA( BM là tia phân giác của ABC)
Nên ANB=MBA( =MBC)
suy ra tam giác ABN cân tại A
suy ra AB=AN( tính chất)