Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : \(\left\{{}\begin{matrix}\widehat{ABC}+\widehat{CBD}=180^o\\\widehat{ACB}+\widehat{BCE}=180^o\end{matrix}\right.\left(kềbù\right)\)
Lại có : \(\widehat{ABC}=\widehat{ACB}\) (\(\Delta ABC\) cân tại A)
Nên : \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)
\(\Leftrightarrow\widehat{CBD}=\widehat{BCE}\)
Xét \(\Delta BDC,\Delta CBE\) có :
\(BC:Chung\)
\(\widehat{CBD}=\widehat{BCE}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
=> \(\Delta BDC=\Delta CBE\left(c.g.c\right)\)
Xét \(\Delta BID,\Delta CIE\) có :
\(\widehat{BID}=\widehat{CIE}\) (đối đỉnh)
\(BD=CE\left(gt\right)\)
\(\widehat{BDI}=\widehat{CEI}\) (do \(\Delta BDC=\Delta CBE\))
=> \(\Delta BID=\Delta CIE\left(g.c.g\right)\)
=> \(\left\{{}\begin{matrix}IB=IC\left(\text{2 cạnh tương ứng}\right)\\ID=IE\left(\text{2 cạnh tương ứng}\right)\end{matrix}\right.\)
b) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(\text{tam giác ABC cân tại A}\right)\\BD=CE\left(gt\right)\end{matrix}\right.\)
Lại có : \(\left\{{}\begin{matrix}AB+BD=AD\\AC+CE=AE\end{matrix}\right.\)
Suy ra : \(AB+BD=AC+EC\)
\(\Leftrightarrow AD=AE\)
=> \(\Delta ADE\) cân tại A
Ta có : \(\widehat{ADE}=\widehat{AED}=\dfrac{180^o-\widehat{A}}{2}\left(1\right)\)
Xét \(\Delta ABC\) cân tại A có :
\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^{^O}-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{ADE}=\widehat{ABC}\left(=\dfrac{180^{^O}-\widehat{A}}{2}\right)\)
Mà thấy : 2 góc này ở vị trí đồng vị
=> \(BC//DE\rightarrowđpcm\)
c) Xét \(\Delta ABM,\Delta ACM\) có :
\(AB=AC\) (\(\Delta ABC\) cân tại A)
\(\widehat{ABM}=\widehat{ACM}\) (\(\Delta ABC\) cân tại A)
BM = CM (M là trung điểm của BC)
=> \(\Delta ABM=\Delta ACM\left(c.g.c\right)\)
=> \(\widehat{BAM}=\widehat{CAM}\) (2 góc tương ứng)
=> AM là tia phân giác của \(\widehat{A}\) (3)
Ta chứng minh : \(\Delta ABI=\Delta ACI\)
Suy ra : \(\widehat{AIB}=\widehat{AIC}\) (2 góc tương ứng)
=> AI là tia phân giác của \(\widehat{A}\) (4)
Từ (3) và (4) => \(AM\equiv AI\)
=> A, M, I thẳng hàng.
=> đpcm
Ta có hình vẽ:
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng
Xét ΔABM và ΔCDM có:
AM = MC ( vì M là trung điểm của AC)
BM = MD ( theo giả thiết -cách vẽ)
góc AMB = góc CMD ( đối đỉnh)
suy ra ΔABM = ΔCDM ( c-g-c)
=> IA = IB ( dpcm )
#B