K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔFBC vuông tại F và ΔECB vuông tại E có

BC chung

\(\widehat{FBC}=\widehat{ECB}\)

DO đó: ΔFBC=ΔECB

Suy ra: FB=EC

b: Ta có: AF+FB=AB

AE+EC=AC

mà BF=CE

và AB=AC

nên AF=AE

Xét ΔABC có AF/AB=AE/AC

nên FE//BC

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD
BD chung

Do đo: ΔBAD=ΔBED

=>DA=DE

b,c: Xét ΔBFC có BA/AF=BE/EC

nên AE//FC

BA=BE

DA=DE

Do đó; BD là trung trực của AE
=>BD vuông góc với AE

=>BD vuông góc với FC

d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE
góc ADF=góc EDC

Do đó: ΔDAF=ΔDEC

=>góc ADF=góc EDC

=>góc ADF+góc ADE=180 độ

=>D,E,F thẳng hàng

1 tháng 1 2023

còn mỗi anh là on còn mn off hết rồi hay sao ấy 

31 tháng 1 2021

A B C E F K

a , Vì \(\Delta ABC\)cân tại A => \(\widehat{ACB}=\widehat{ABC}\)

mà E \(\in\)AB => \(\widehat{ACB}=\widehat{EBK}\)( 1 )

Vì EK // AC => \(\widehat{EKB}=\widehat{ACB}\)( 2 )

TỪ ( 1 ) và ( 2 ) => \(\widehat{EBK}=\widehat{EKB}\)

=> \(\Delta EBK\)cân tại E

b , Đề bài thiếu :>

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.a) Chứng tỏ tam giác ABC vuông.b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BICCâu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx...
Đọc tiếp

Câu 4. Cho tam giác ABC, đường phân giác AD (D thuộc BC), kẻ tia Dx song song với AB, tia Dx cắt AC tại E. Chứng minh tam giác ADE là tam giác cân.

Câu 5. Cho tam giác ABC có AB = 6cm, AC = 8cm và BC = 10cm.

a) Chứng tỏ tam giác ABC vuông.

b) Kẻ phân giác BD và CE (D thuộc AC, E thuộc AB), BD và CE cắt nhau tại I. Tính góc BIC

Câu 6. Cho tam giác ABC vuông tại A, kẻ AH vuông góc với BC (H thuộc vẽ tia Bx song song với AH). Trên Bx lấy D sao cho BD = AH.

a) Chứng minh ΔAHB và ΔDHB bằng nhau.

b) Nếu AC = 12cm; BC =15cm. Tính độ dài DH.

Câu 7.  Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Câu 8.  Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm M. Trên tia đối của tia CB lấy điểm N sao cho BM = CN.

a) Chứng minh ΔAMN là tam giác cân.

b) Kẻ BH vuông góc với AM (H thuộc AM), CK vuông góc với AN (K thuộc AN). Chứng minh rằng BH = CK.

c) Gọi O là giao điểm của BH và CK. Chứng minh  ΔOBC cân.

d) Gọi D là trung điểm của BC. Chứng minh rằng A, D, O thẳng hàng.

Câu 9. Cho tam giác ABC, điểm D thuộc cạnh BC. Gọi M là trung điểm của AD. Trên tia đối của tia MB lấy điểm E sao cho ME = MB. Trên tia đối của tia MC lấy F sao cho MF = MC. Chứng minh:

a) AE = BD;

b) AF // BC.

c) Ba điểm A, E, F thẳng hàng.

Câu 10. Cho tam giác ABC cân tại A, M là trung điểm của BC.

a) Chứng minh góc AFE = gócABC⇒EF//BC và  ΔABM=ΔACM.

b) Chứng minh AM⊥BC.

c) Trên cạnh BA lấy  điểm E. Trên cạnh CA lấy điểm F sao cho BE = CF. Chứng minh ΔEBC và ΔFCB bằng nhau.

d) Chứng minh EF // BC.

 

0
7 tháng 1 2018

B C A F K D E M

a)Vì \(\Delta ABC\)cân tại A (gt) \(\Rightarrow\hept{\begin{cases}\widehat{B}=\widehat{C}\left(1\right)\\AB=AC\left(4\right)\end{cases}}\)

Vì DE // BC (gt) \(\Rightarrow\hept{\begin{cases}\widehat{ADE}=\widehat{DBC}\left(2\right)\\\widehat{AED}=\widehat{ECB}\left(3\right)\end{cases}}\)

Từ \(\left(1\right),\left(2\right)\left(3\right)\Rightarrow\widehat{ADE}=\widehat{AED}\)

\(\Delta AED\)có:

\(\widehat{ADE}=\widehat{AED}\left(cmt\right)\)

\(\Rightarrow\Delta AED\)cân tại A (tính chất)

=> AE =AD (định nghĩa) (5)

Từ (4),(5) => BD =CE (6)

Vì DE // BC (gt)\(\Rightarrow\widehat{EDC}=\widehat{DCB}\)(2 góc so le trong) 

mà \(\widehat{DCB}=\widehat{DCE}\)(CD là phân giác của \(\widehat{ACB}\))

\(\Rightarrow\widehat{EDC}=\widehat{DCE}\)

\(\Delta EDC\)có: 

\(\widehat{EDC}=\widehat{DCE}\left(cmt\right)\left(9\right)\)

\(\Rightarrow\Delta EDC\)cân tại E (tính chất)

=> ED = EC (định nghĩa) (7)

Từ (6), (7) => BD = DE (15)
Lấy K thuốc tia đối của tia DF

Ta có: \(\widehat{KDC}=90^o\Rightarrow\widehat{EDC}+\widehat{DCK}=90^o\left(8\right)\)

\(\Delta KDC\)có:

\(\widehat{KDC}=90^o\)

\(\Rightarrow\widehat{DKC}+\widehat{DCK}=90^o\)(tổng 3 góc trong 1 tam giác, áp dụng vào tam giác vuông) (10)

Từ (8), (9), (10) => \(\widehat{DKC}=\widehat{KDE}\)

\(\Delta EDK\)có:

\(\widehat{EDK}=\widehat{EKD}\left(cmt\right)\)

\(\Rightarrow\Delta EDK\)cân tại E (tính chất)

=> ED =EK (định nghĩa) (11)

Từ (7),(11) => ED = EC = EK

Ta có: CK = EC + EK

mà ED = EC = EK (cmt)

=> CK= ED + ED 

=> CK =2.ED (12)

\(\Delta CDK\)và \(\Delta CDF\)có:

\(\widehat{DCK}=\widehat{CDF}\)

chung cạnh CD

\(\widehat{CDK}=\widehat{CDF}\left(=90^o\right)\)

\(\Rightarrow\Delta CDK=\Delta CDF\)(góc nhọn - cạnh góc vuông)

=> CK = CF(2 cạnh tương ứng) (13)

Từ (12),(13) => CF = 2.ED (14)

Từ (14),(15) => CF = 2.BD

b) \(\Delta AMD\)và \(\Delta AME\)có:

AD = AE (câu a)

\(\widehat{MAD}=\widehat{MAE}\left(gt\right)\)

chung AM

\(\Rightarrow\Delta AMD=\Delta AME\left(c.g.c\right)\)

=> MD = ME (2 cạnh tương ứng)

Ta có: ED = MD + ME

mà MD = ME (cmt)
=> ED = MD + MD

=> ED = 2.MD 

=> 2.ED = 2.2MD 

=>2.ED = 4.MD (16)

Từ (14),(16) => CF = 4.MD

24 tháng 2 2018

Ai bảo bài làm của mik sai thì hãy nhìn kĩ lại đi nha ! 

Bài này, t chắc chắn đúng 100% lun đó