Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Xét ΔABE vuông tại E và ΔACD vuông tại D có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACD
2: Ta có: ΔABE=ΔACD
=>\(\widehat{ABE}=\widehat{ACD}\)
Ta có: \(\widehat{ABE}+\widehat{EBC}=\widehat{ABC}\)
\(\widehat{ACD}+\widehat{DCB}=\widehat{ACB}\)
mà \(\widehat{ABE}=\widehat{ACD};\widehat{ABC}=\widehat{ACB}\)
nên \(\widehat{EBC}=\widehat{DCB}\)
=>\(\widehat{IBC}=\widehat{ICB}\)
=>ΔIBC cân tại I
3: Xét ΔABC có
BE,CD là các đường cao
BE cắt CD tại I
Do đó: I là trực tâm của ΔABC
=>AI\(\perp\)BC tại H
Ta có: ΔABH vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AB^2-AH^2=BH^2\left(1\right)\)
Ta có: ΔIHB vuông tại H
=>\(HI^2+HB^2=BI^2\)
=>\(HB^2=BI^2-HI^2\left(2\right)\)
Từ (1),(2) suy ra \(AB^2-AH^2=BI^2-HI^2\)
=>\(AB^2+HI^2=BI^2+AH^2\)
a, Vì \(\left\{{}\begin{matrix}AB=AC\\AD=AE\\\widehat{BAC}.chung\end{matrix}\right.\) nên \(\Delta ABD=\Delta ACE\left(c.g.c\right)\)
b, Vì \(\Delta ABD=\Delta ACE\) nên \(\widehat{ABD}=\widehat{ACE}\)
Mà \(\widehat{ABC}=\widehat{ACB}\) nên \(\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\)
Do đó \(\widehat{IBC}=\widehat{ICB}\) nên tam giác IBC cân tại I
c, \(AD=AE\) nên tg ADE cân tại A
Do đó \(\widehat{AED}=\dfrac{180^0-\widehat{BAC}}{2}\)
Mà tg ABC cân tại A nên \(\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\)
\(\Rightarrow\widehat{AED}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên DE//BC
a: Xét ΔADB vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔACE
b: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
vẽ hộ mk cái hình vs
có làm thì ms có ăn ⇒tự đuy mà vẽ hình
mà thui nhường mk đuy