K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2018

:  a/ Xét 2 tam giác BDE và CED có 
BD=EC 
DE chung 
Góc BDE = góc DEC do chúng lần lượt bù với 2 góc bằng nhau là ADE và AED 
=> dccm (c.g.c) 
b/ Có góc DKB bằng góc EKC do đối đỉnh 
KD=KE 
góc BDK=góc CEK 
=> KBD=KCE (g.c.g) 
c/ Tam giác ABK và ACK bằng nhau (tự cm, cái này dễ) 
=> góc BAK = góc CAK =>dccm 
d/ kéo dài AM cắt BC tại H 
Tam giác BMH = tam giác CMH 
=> góc BMH bằng góc CMH 
=> dpcm

Bố thí cho cái - Give you :v

a: Xét ΔABE và ΔACD có

AB=AC

góc BAE chung

AE=AD
=>ΔABE=ΔACD

=>BE=CD

b; ΔABE=ΔACD

=>góc ABE=góc ACD

góc ABE+góc EBC=góc ABC

góc ACD+góc DCB=góc ACB

mà góc ABE=góc ACD và góc ABC=góc ACB

nên góc EBC=góc DCB

=>góc KBC=góc KCB

=>ΔKBC cân tại K

a: Kẻ DH và EK lần lượt vuông góc với BC

=>DH//EK

H,B lần lượt là hình chiếu của D,B trên BC

=>HB là hình chiếu của DB trên BC

K,C lần lượt là hình chiếu của E,C trên BC

=>KC là hình chiếu của EC trên BC

Xét ΔDHB vuông tại H và ΔEKC vuông tại K có

DB=EC
góc DBH=góc ECK

=>ΔDHB=ΔEKC

=>BH=KC và DH=EK

b: Xét ΔABE và ΔACD có

AB=AC
góc BAE chung

AE=AD
=>ΔABE=ΔACD

=>BE=CD

c: Xét ΔMDB và ΔMEC có

góc MDB=góc MEC

DB=EC
góc MBD=góc MCE

=>ΔMDB=ΔMEC

d: Xét ΔABM và ΔACM có

AM chung

MB=MC

AB=AC

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

23 tháng 8 2023

còn câu e kìa bạn

a: Xét ΔBEC có 

I là trung điểm của BE

M là trung điểm của BC

Do đó: IM là đường trung bình của ΔBEC

Suy ra: \(IM=\dfrac{EC}{2}\left(1\right)\)

Xét ΔDCB có 

K là trung điểm của DC

M là trung điểm của BC

Do đó: KM là đường trung bình của ΔDCB

Suy ra: \(KM=\dfrac{BD}{2}\)

mà BD=CE

nên \(KM=\dfrac{CE}{2}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra IM=KM

a: Xét ΔACD và ΔABE có

\(\dfrac{AC}{AB}=\dfrac{AD}{AE}\left(\dfrac{20}{15}=\dfrac{8}{6}=\dfrac{4}{3}\right)\)

\(\widehat{CAD}\) chung

Do đó: ΔACD~ΔABE

b: Ta có: ΔACD~ΔABE

=>\(\widehat{ACD}=\widehat{ABE}\) và \(\widehat{AEB}=\widehat{ADC}\)

Xét ΔHDB và ΔHEC có

\(\widehat{HBD}=\widehat{HCE}\)

\(\widehat{DHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHDB~ΔHEC

=>\(\dfrac{HD}{HE}=\dfrac{HB}{HC}\)

=>\(HD\cdot HC=HB\cdot HE\)

c: Ta có: AD+DB=AB

=>DB=15-8=7(cm)

Ta có: AE+EC=AC

=>EC+6=20

=>EC=14(cm)

Xét ΔADE và ΔACB có

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(\dfrac{8}{20}=\dfrac{6}{15}=\dfrac{2}{5}\right)\)

\(\widehat{A}\) chung

Do đó: ΔADE~ΔACB

=>\(\widehat{ADE}=\widehat{ACB}\)

mà \(\widehat{ADE}=\widehat{FDB}\)

nên \(\widehat{FDB}=\widehat{FCE}\)

Xét ΔFDB và ΔFCE có

\(\widehat{FDB}=\widehat{FCE}\)

\(\widehat{F}\) chung

Do đó: ΔFDB~ΔFCE

=>\(\dfrac{S_{FDB}}{S_{FCE}}=\left(\dfrac{BD}{CE}\right)^2=\dfrac{1}{4}\)

=>\(S_{FCE}=4\cdot S_{FDB}\)

30 tháng 9 2019

2. 

Câu hỏi của Phan thanh hằng - Toán lớp 8 - Học toán với OnlineMath

23 tháng 3 2023