K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

xaet1 tam giác AEM và tam giác AFM có :

AE=AF(GT)

EAM=FAM(ABC cân tại A;AM là trung tuyến)

AM Cạnh chung

=>tam giác AEM=AFM (c.g .c )

=>ME=MF(cạnh tương ứng)

=> AEM=AFM (góc tương ứng)

b) vì AEM=AFM (theo a)

=>AEF là tam giác cân tại A(tính chất tam giác cân)

mk lm được nhiu ak

13 tháng 4 2020

a) M là trung điểm của BC

=> BM=CM

tam giác ABC cân tại A

=> AB=AC

xét tam giác ABM và tam giác ACM có

AB=AC

BM=CM

cạnh AM chung

do đó : tam giác ABM= tam giác ACM ( c.c.c)

b) do tam giác ABM = tam giác ACM

=> góc A1 = góc A2

xét tam giác AEM và tam giác AFM có

cạnh AM chung

góc A1= góc A2

góc AEM=góc AFM =90 độ

do đó tam giác AEM = tam giác AFM ( cạnh huyền - góc nhọn)

c) gọi N là giao của AM va EF

do tam giác AEM= tam giác AFM

=> AE=AF

xét tam giác AEN và tam giác AFN có

cạnh AN chung

góc A1 = góc A2

AE=AF

do đó tam giác AEN=tam giác AFN ( c.g.c)

=> góc N1=góc N2

mà góc N1 + góc N2 = 180 độ ( kề bù)

=> góc N1= góc N2=90 độ

=> AN vuông góc EF

hay AM vuông góc EF

3 tháng 5 2021

Thiếu câu d nha bn

Cho tam giác ABC cân tại A , có M là chung điểm của BC

a) CM :Tam Giác ABM = Tam giác ACM

b)Từ M kẻ ME vuông góc AB ;MF vuông góc AC (E thuộc AB ,F thuộc AC) .CM Tam giác AEM =Tam giác AFM

c)CM AM vuông góc EF

d) Trên tia MF lấy điểm I sao cho IM =FM . CM EI // AM

Giúp minh với ! minh h cho

28 tháng 2 2021

a) xét ΔABM và ΔACM có

góc B = góc C 

AB = AC ( ΔABC cân tại A )

BM=CM ( tính chất các đường của Δ cân từ đỉnh )

=> ΔABM = ΔACM  

b) xét ΔBME và ΔCMF có

góc B bằng góc C 

BM=CM

=> ΔBME=ΔCMF ( cạnh huyền góc nhọn )

=> FM = EM 

=> ΔEMF cân tại M

c) gọi giao của EF và AM là O 

ta có BE = CF => AE=AF

=> ΔAEF cân tại A 

ta có AM là tia phân giác của góc A 

mà O nằm trên AM suy ra AO cũng là tia phân giác của góc A 

ta lại có ΔAEF cân tại A 

suy ra AO vuông góc với EF

suy ra AM vuông góc với EF

xét ΔAEF và ΔABC có 

EF và BC đều cùng vuông góc với AM => EF // BC 

 

 

a) Xét ΔABM và ΔACM có 

AB=AC(ΔABC cân tại A)

AM chung

BM=CM(M là trung điểm của BC)

Do đó: ΔABM=ΔACM(c-c-c)

b) Xét ΔEMB vuông tại E và ΔFMC vuông tại F có 

BM=CM(M là trung điểm của BC)

\(\widehat{EBM}=\widehat{FCM}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔEMB=ΔFMC(Cạnh huyền-góc nhọn)

Suy ra: ME=MF(hai cạnh tương ứng)

Xét ΔEMF có ME=MF(cmt)

nên ΔEMF cân tại M(Định nghĩa tam giác cân)

28 tháng 1 2018

Làm ơn làm hộ mình mà. Mình đang cần gấp.😥

a: Xét ΔABM vuông tại M và ΔACN vuông tại N có

AB=AC

\(\widehat{BAM}\) chung

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

b: Xét ΔAMN có AM=AN

nên ΔAMN cân tại A

21 tháng 1 2022

a) Xét tam giác BNC vuông tại N và tam giác CMB vuông tại M:

BC chung.

\(\widehat{B}=\widehat{C}\) (Tam giác ABC cân tại A).

=> Tam giác BNC = Tam giác CMB (cạnh huyền - góc nhọn).

=> BN = CM (2 cạnh tương ứng).

Ta có: AB = AN + BN; AC = AM + CM.

Mà AB = AC (Tam giác ABC cân tại A); BN = CM (cmt).

=> AM = AN.

b) Xét tam giác AMN: AM = AN (cmt).

=> Tam giác AMN cân tại A.

c) Xét tam giác ABC: 

BM; CN là đường cao (BM vuông góc với AC; CN vuông góc với AB).

I là giao điểm của BM và CN (gt).

=> I là trực tâm.

=> AI là đường cao.

Mà AI là đường cao xuất phát từ đỉnh A của tam giác ABC cân tại A.

=> AI là đường phân giác góc A (Tính chất các đường trong tam giác cân).