Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H K
Từ C kẻ CK vuông góc AB.
Dễ dàng chứng minh được \(\Delta\)BHA=\(\Delta\)CKA (Cạnh huyền . Góc nhọn)
=> BH=CK và AH=AK
Ta có: AB2+AC2+BC2=AH2+BH2+AK2+CK2+CH2+BH2
Thay CK=BH và AK=AH; ta được:
AB2+AC2+BC2=AH2+BH2+AH2+BH2+CH2+BH2=3.BH2+2.AH2+CH2 (đpcm).
\(3BH^2+2\cdot AH^2+CH^2\)
\(=BH^2+CH^2+2\cdot BH^2+2\cdot AH^2\)
\(=BC^2+2\cdot AB^2\)
\(=BC^2+AB^2+AC^2\)
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC