K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2017

a, Chứng minh AH là đường trung bình của tam giác BCD

b, Sử dụng hệ thức giữa đường cao và các cạnh góc vuông trong tam giác vuông BCD và áp dụng câu a)

20 tháng 10 2015

tick cho mình đi rồi mình giải câu c

25 tháng 10 2021

Ủa rồi cậu đã giải câu c) chưa?? 😃. Đã 4 năm rồi còn chưa thực hiện lời hứa =)))

2 tháng 7 2021

a) Do AH là đường cao trong tam giác ABC cân tại A

\(\Rightarrow\) AH cũng là đường trung tuyến trong tam giác ABC

Suy ra H là trung điểm của BC.

mà AH//BD (vì cùng vuông góc với BC)

\(\Rightarrow\) AH là đường trung bình của tam giác DBC

\(\Rightarrow\) 2AH=BD

b)Áp dụng hệ thức trong tam giác vuông có 

\(\dfrac{1}{BK^2}=\dfrac{1}{BD^2}+\dfrac{1}{BC^2}=\dfrac{1}{\left(2AH\right)^2}+\dfrac{1}{BC^2}\) \(=\dfrac{1}{BC^2}+\dfrac{1}{4AH^2}\)

Vậy...

15 tháng 8 2021

trinhf bày rõ hơn được không bạn ơii

 

16 tháng 12 2021

Bài 2: 

a: Xét (E) có 

DF⊥DE tại D

nên DF là tiếp tuyến của (E;ED)

18 tháng 12 2021

a: Xét (O) có 

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)