K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

a,xét tgiac abk vuông tại k và tgiac ach vuông tại h có :  góc bac chung,ab=ac(do tgiac abc cân tại a)                                                              =>tgiac abk=tgiac ach ( ch-gn)                             =>ak=ah( cặp cạnh tương ứng)                     xét tgiac ahk có ak=ah(cmt)=>tgiac ahk cân tại a                                                                 b,ta có ah và bk là đường cao , cắt nhau tại i => i là trực tâm => AI cũng là đường cao     mà trong tgiac cân, đường cao đồng thời là đường phân giác=> AI cũng là phân giác góc bac(đpcm)                                               c,AI là đường cao tgiac abc => cũng là đường cao tgiac ahk                                    => AI vuông góc hk,bc                                   => hk song song bc ( từ vuông góc->song song)

vài chỗ tui trình bày k ok lắm nên bạn nên trình bày lại theo cách của bạn nhé .-.

2 tháng 3 2020

a, xét tam giác AKB và tam giác AHC có : góc A chung

AB = AC do tam giác ABC cân tại A (gt)

góc AKB = góc AHC = 90 

=> tam giác AKB = tam giác AHC (ch-gn)

=> AH = AK (Đn)

=> tam giác AHK cân tại A (Đn)

b, xét tam giác AHI và tam giác AKI có : AI chung

AH = AK (câu a)

góc AHI = góc AKI = 90

=> tam giác AHI = tam giác AKI (ch-cgv)

=> góc HAI = góc KAI (đn) mà AI nằm giữa AH và AK 

=> AI là pg của góc HAK (đn)

c, tam giác AHK cân tại A (câu a) => góc AHK = (180 - góc A) : 2

tam giác ABC cân tại A (gt) => góc ABC = (180 - góc A) : 2

=> góc AHK = góc ABC mà 2 góc này đồng vị

=> HK // BC (đl)

a) Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC(ΔABC cân tại A)

\(\widehat{KAC}\) chung

Do đó: ΔAHB=ΔAKC(cạnh huyền-góc nhọn)

⇒AH=AK(hai cạnh tương ứng)

b) Xét ΔAHK có AH=AK(cmt)

nên ΔAHK cân tại A(Định nghĩa tam giác cân)

\(\widehat{AKH}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(1)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(Số đo của một góc ở đáy trong ΔABC cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AKH}=\widehat{ABC}\)

mà \(\widehat{AKH}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị

nên HK//BC(dấu hiệu nhận biết hai đường thẳng song song)

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc HAB chung

=>ΔAHB=ΔAKC

=>AH=AK

b:

Xét ΔABC có

BH,CK là đường cao

BH cắt CK tại I

=>I là trực tâm

=>AI vuông góc BC tại M

Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có

BC chung

KC=HB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác

c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC

 

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC
góc HAB chung

=>ΔAHB=ΔAKC

=>AH=AK

b:

Xét ΔABC có

BH,CK là đường cao

BH cắt CK tại I

=>I là trực tâm

=>AI vuông góc BC tại M

Xét ΔKBC vuông tạiK và ΔHCB vuông tại H có

BC chung

KC=HB

=>ΔKBC=ΔHCB

=>góc IBC=góc ICB

=>ΔIBC cân tại I

mà IM là đường cao

nên IM là phân giác

c: Xet ΔBAC có AK/AB=AH/AC
nên KH//BC

11 tháng 5 2023

Bạn ơi cho hỏi là Ak/Ab = AH/Ac là sao ạ

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC ) a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BACb) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.c) Chứng minh rằng tam giác MDE đềud) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cmBài 2: Cho tam giác ABC vuông tại B,...
Đọc tiếp

Bài 1 : Cho tAm giác cân ABC có <BAC=120 độ. Vẽ đường cao AM ( M thuộc BC )

 a) Chứng mình rằng : CM=MB và AM là tia phân giác của <BAC

b) Kẻ MD vuông góc với AB ( D thuộc AB), kẻ ME vuông góc với AC ( E thuộc AC). Chứng minh tam giác ADE cân và DE // BC.

c) Chứng minh rằng tam giác MDE đều

d) Đường vuông góc với BC kẻ từ C cắt tia BA tại F. Tính độ dài cạnh AF biết CF = 6 cm

Bài 2: Cho tam giác ABC vuông tại B, kẻ AI là tia phân giác của góc BAC, IH vuông góc với AC tại H.

a. Chứng minh tam giác ABI = tam giác AHI

b. HI  cắt AB tại K. Chứng tỏ rằng BK=HC

c. Chứng minh rằng BH // KC

d. Qua C kẻ đường thẳng song song với HK, cắt AI tại O. Tìm điều kiện của tam giác ABC để tam giác CIO đều

Bài 3: Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC ( H thuộc BC)

a.  Chứng minh : tam giác AHB= tam giác AHC

b. Gỉa sử AB = AC = 5cm, BC = 8cm. Tính độ dài AH

c. Trân tia đối của tai HA lấy điểm M sao cho HM - HA. chứng minh tam giác ABM cân

d. Chứng minh BM // AC

0
11 tháng 3 2017

Các bạn giúp mình nhé 

2 tháng 3 2020

a) Xét tam giác AME vuông tại E và tam giác AMF vuông tại F có:

\(\widehat{BAM}=\widehat{CAM}\)(AM là phân giác của \(\widehat{BAC}\))

AM:chung

Suy ra \(\Delta AME=\Delta AMF\)(cạnh huyền- góc nhọn)(1)

=> ME=MF(2 cạnh tương ứng)

Suy ra MEF cân.

b)Theo đề bài: tam giác ABC có M là trung điểm BC và AM là phân giác góc BAC. Suy ra AM vừa là đường trung tuyến vừa là đường phân giác của tam giác ABC và tam giác ABC là tam giác cân.(2)

c)Từ (2)suy ra AM là đường cao của tam giác cân ABC và \(AM\perp BC\)(3)

Từ (1) ta cũng suy ra AE=AF (2 cạnh tương ứng) và AEF là tam giác cân. Xét:

\(\widehat{AEF}=\widehat{AFE=}\frac{180^o-\widehat{A}}{2}\left(4\right)\)

\(\widehat{B}=\widehat{C}=\frac{180^o-\widehat{A}}{2}\left(5\right)\)(ABC là tam giác cân(cmt))

Từ (4) và (5), suy ra các cạnh trên bằng nhau. Mà chúng lại ở vị trí so le trong nên EF//BC(6)

Từ (3) và (6), suy ra \(AM\perp EF\)(đpcm)

8 tháng 4 2017

Bạn tự vẽ hình

a Xét tam giác ABD và tam giác ACE có

góc BEC= góc CDB= 90 độ

AB=AC

AH chung

suy ra tam giác ABD= tam giác ACE(c.g.c)

b) Vì tam giác ABD= tam giác ACE( theo a)

 suy ra BD=CEhay BH=CH( 2canhj tương ứng)

Xét tam giác BHC có

BH= CH

suy ra tam giác BHC cân tại H

5 tháng 12 2018

mình có 1 tấm ảnh giống i hít ảnh đại diện của bạn luôn