K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC(Cạnh huyền-góc nhọn)

28 tháng 3 2021

b. Ta có : AB = BE + EA

               CA = CD + DA

MÀ : AB=CA ( TAM GIÁC ABC CÂN TẠI A ) 

        EA=DA ( ΔADB=ΔAEC)

⇒BE=CD 

XÉT ΔOBE VÀ ΔOCD 

CÓ : \(\widehat{E}=\widehat{D}\) (GT)

BE=CD (CMT)

\(\widehat{EBO}=\widehat{DCO}\) (ΔADB=ΔAEC)

⇒ΔOBE = ΔOCD (G-C-G)

⇒OB = OC (2 CẠNH TƯƠNG ỨNG)

⇒ΔBOC CÂN TẠI O

 

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: \(\widehat{OCB}=\widehat{OBC}\)

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

1 tháng 3 2022

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

ˆBADBAD^ chung

Do đó: ΔADB=ΔAEC

b: Ta có: ΔADB=ΔAEC

nên BD=CE

Xét ΔEBC vuông tạiE và ΔDCB vuông tại D có

BC chung

CE=BD

Do đó:ΔEBC=ΔDCB

Suy ra: ˆOCB=ˆOBCOCB^=OBC^

hay ΔOBC cân tại O

c: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

d: Ta có: ΔEBC vuông tại E

mà EM là đường trung tuyến

nên BC=2EM

20 tháng 6 2019

a ) Tam giác cân ABC có BD , CE là đường cao => BD , CE cũng là đường trung tuyến ứng với cạnh AC , AB

mà AB = AC => AE = AB = AD = AC

Xét \(\Delta ADB\)và \(\Delta AEC\)có :

AB = AC ( do tam giác ABC cân )

\(\widehat{ADB}=\widehat{AEC}\) \(\left(=90^o\right)\)( do \(BD\perp AC\)\(CE\perp AB\))

AD = AE ( cm trên )

nên \(\Delta ADB=\Delta AEC\)( c.g.c )

b ) Do \(\Delta ABC\) cân => \(\widehat{ABC}=\widehat{ACB}\)

\(\widehat{ABC}=\widehat{ABD}+\widehat{DBC}\)

\(\widehat{ACB}=\widehat{ACE}+\widehat{ECB}\)

Mà \(\widehat{ABD}=\widehat{ACE}\)( do \(\Delta ADB=\Delta AEC\)phần a ) => \(\widehat{DBC}=\widehat{ECB}\)

=> \(\Delta BOC\)cân

Mấy phần còn lại tự làm , hình dễ tự vẽ

A)Vì tam giác ABC cân tại A 

=> ABC = ACB 

=> AB = AC 

Xét tam giác AEC (AEC = 90) và tam giác ADB(ADB=90) ta có :

AB = AC 

Góc A chung 

=> tam giác AEC = tam giác ADB ( ch-gn)

B) Tự xét tam giác ECB = tam giác DBC (cgv-gn)

=> EB = DC tương ứng

Xét tam giác EBO vuông tại E và tam giác DCO vuông tại D ta có :

EB = DC

EOB = DOC (đối đỉnh)

=> 2 tam giác trên bằng nhau

=> BO = OC tương ứng

=> tam giác BOC cân tại B

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔAED có AE=AD

nên ΔAED cân tại A

c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có 

EB=DC

\(\widehat{EBI}=\widehat{DCI}\)

Do đó; ΔEBI=ΔDCI

Suy ra: IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

26 tháng 1 2022

Mình cảm ơn cậu nhé

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{A}\) chung

Do đó: ΔADB=ΔAEC

Suy ra: AD=AE

b: Ta có: \(\widehat{ABC}=\widehat{ABD}+\widehat{OBC}\)

\(\widehat{ACB}=\widehat{ACE}+\widehat{OCB}\)

mà \(\widehat{ABC}=\widehat{ACB}\)

và \(\widehat{ABD}=\widehat{ACE}\)

nên \(\widehat{OBC}=\widehat{OCB}\)

hay ΔOCB cân tại O

25 tháng 11 2018

Ta có CE, BD, AH cắt nhau tại O

O là trực tâm của tam giac ABC (tính chât 3 đường trung trực tam giác) 

AH vuông góc BC                                                             (1)

Gọi I là giao điểm của AH và ED, ta có:

Tam giác AED là tam giac cân tại A (gt)

Suy ra AI vuông góc ED (AH vuông góc BC)                      (2)

Từ (1) và (2) suy ra ED//BC (đpcm)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔADB=ΔAEC

=>BD=CE

b: ΔABD=ΔACE

=>\(\widehat{ABD}=\widehat{ACE}\)

=>\(\widehat{OBE}=\widehat{OCD}\)

ΔABD=ΔACE

=>AD=AE

AE+EB=AB

AD+DC=AC

mà AE=AD và AB=AC

nên EB=DC

Xét ΔOEB vuông tại E và ΔODC vuông tại D có

EB=DC

\(\widehat{OBE}=\widehat{OCD}\)

Do đó: ΔOEB=ΔODC

c: ΔOEB=ΔODC

=>OB=OC

Xét ΔABO và ΔACO có

AB=AC

BO=CO

AO chung

Do đó: ΔABO=ΔACO

=>\(\widehat{BAO}=\widehat{CAO}\)

=>AO là phân giác của góc BAC

d: Ta có: ΔABC cân tại A

mà AH làđường trung tuyến

nên AH là phân giác của góc BAC

mà AO là phân giác của góc BAC(cmt)

và AO,AH có điểm chung là A

nên A,O,H thẳng hàng

15 tháng 3 2023

Có chỗ nào không hiểu thì hỏi b nhé

loading...