Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

E C B A D I
A)Xét tam giác ADB và tam giác AEC có
\(\widehat{AEC}=\widehat{ADB=90}^0\left(GT\right)\)
\(AB=AC\left(GT\right)\)
\(\widehat{A}chung\)
Từ ba điều trên => tam giác ABD= tam giác AEC( G.C.G)
=> BD=CE( 2 CẠNH T/Ư)
B) Xét tam giác AED, có: \(AE=AD\)(tam giác ADB= tam giác AEC)
=> Tam giác AED là tam giác cân
C) câu c) mk chư bt lm
c ) +)Xét tam giác AEI và tam giác ADI có :
\(\widehat{E}=\widehat{D}\left(=90\right)^o\)
AE = AD ( cmt )
AI chung
=> Tam giác AEI = Tam giác ADI ( ch - cgv)
=> Góc DAI = Góc EAI ( hai góc tương ứng )
Mà AI nằm giữa AB và AC nên AI là đường phân giác của góc BAC( ĐPCM )
+) Gọi điểm H là giao của BC và AI .
Xét tam giác ABC có :
BD là đường cao thứ nhất
CE là đường cao thứ hai
=> AH phải là đường cao thứ ba (t/c đường cao trong tam giác )
=> \(Ah⊥BC\)
Mà I thuộc AH => \(AI⊥BC\)

a: O nằm trên đường trung trực của AB
=>OA=OB(1)
O nằm trên đường trung trực của AC
=>OA=OC(2)
từ (1),(2) suy ra OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
=>\(\hat{ABO}=\hat{ACO}\)
Xét ΔOBD và ΔOCE có
OB=OC
\(\hat{OBD}=\hat{OCE}\overline{}\)
BD=CE
Do đó: ΔOBD=ΔOCE
b: ΔOBD=ΔOCE
=>OD=OE
=>O nằm trên đường trung trực của DE(3)
ta có: AD+DB=AB
AE+EC=AC
mà DB=EC và AB=AC
nên AD=AE
=>A nằm trên đường trung trực của DE(4)
Từ (3),(4) suy ra AO là đường trung trực của DE
c: Xét ΔABC có \(\frac{AD}{DB}=\frac{AE}{EC}\)
nên DE//BC
a)
\(O\) cách đều \(B\) và \(C\) ⇒ \(O B = O C\)
Giả thiết: \(B D = C E\)
Góc \(\angle D B O = \angle E C O\) do tam giác \(A B C\) cân, \(A O\) là trục đối xứng.
⇒ \(\triangle D O B = \triangle E O C\) (c.g.c).
b)
Từ (a) suy ra \(O D = O E\) ⇒ \(A O\) qua trung điểm \(D E\)
\(A O\) vuông góc \(D E\) (vì là trục đối xứng)
\(A O\) là đường trung trực của \(D E\).
c)
\(A O \bot B C\) và \(A O \bot D E\)
Hai đường cùng vuông góc với \(A O\) ⇒ DE\\BC
nhé bạn cảm ơn bí ẩn đã nhắc nhở\(\)
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE
b: Xét ΔAED có AE=AD
nên ΔAED cân tại A
c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có
EB=DC
\(\widehat{EBI}=\widehat{DCI}\)
Do đó; ΔEBI=ΔDCI
Suy ra: IB=IC
Xét ΔAIB và ΔAIC có
AI chung
IB=IC
AB=AC
Do đó: ΔAIB=ΔAIC
Suy ra: \(\widehat{BAI}=\widehat{CAI}\)
hay AI là tia phân giác của góc BAC
Mình cảm ơn cậu nhé