Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C I F E
a) Xét \(\Delta ABI,\Delta ACI\) có :
\(AB=AC\) (ΔABC cân tại A)
\(\widehat{AIB}=\widehat{AIC}\left(=90^o\right)\)
\(\widehat{ABI}=\widehat{ACI}\) (ΔABC cân tại A)
=> \(\Delta ABI=\Delta ACI\) (cạnh huyền - góc nhọn)
=> BI = CI (2 cạnh tương ứng)
=> I là trung điểm của BC.
b) Xét \(\Delta AEI,\Delta AFI\) có :
\(AE=AF\left(gt\right)\)
\(\widehat{EAI}=\widehat{FAI}\) (do \(\Delta ABI=\Delta ACI\) - cm câu a)
\(AI:Chung\)
=> \(\Delta AEI=\Delta AFI\left(c.g.c\right)\)
=> \(IE=IF\) (2 cạnh tương ứng)
=> ΔIEF cân tại I.
c) Ta có : \(\left\{{}\begin{matrix}AB=AC\left(\text{(ΔABC cân tại A)}\right)\\AE=AF\left(gt\right)\end{matrix}\right.\)
Lại có : \(\left\{{}\begin{matrix}E\in AB\\F\in AC\end{matrix}\right.\left(gt\right)\Rightarrow\left\{{}\begin{matrix}AB=AE+BE\\AC=AF+FC\end{matrix}\right.\)
Nên : \(AB-AE=AC-AF\)
\(\Leftrightarrow BE=CF\)
Xét \(\Delta EBI,\Delta FCI\) có :
\(BE=CF\left(cmt\right)\)
\(BI=CI\) (I là trung điểm của BC)
\(IE=IF\) (tam giác IEF cân tại I)
=> \(\Delta EBI=\Delta FCI\left(c.c.c\right)\)
=> đpcm.
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
Bài 1:
a)
Thay x=0 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được
\(2\cdot0^2-8=0-8=-8\)
Vậy: -8 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=0
Thay x=-2 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được
\(2\cdot\left(-2\right)^2-8=2\cdot4-8=8-8=0\)
Vậy: 0 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=-2
Thay x=3 vào hàm số \(y=f\left(x\right)=2x^2-8\), ta được
\(2\cdot3^2-8=2\cdot9-8=18-8=10\)
Vậy: 10 là giá trị của hàm số \(y=f\left(x\right)=2x^2-8\) tại x=3
b) Khi y=0 thì \(2x^2-8=0\)
\(\Leftrightarrow2x^2=8\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow x\in\left\{2;-2\right\}\)
Vậy: Khi y=0 thì \(x\in\left\{2;-2\right\}\)
c) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow2x^2\ge0\forall x\)
\(\Rightarrow2x^2-8\ge-8\forall x\)
Dấu '=' xảy ra khi \(x^2=0\Leftrightarrow x=0\)
Vậy: Giá trị nhỏ nhất của biểu thức \(F\left(x\right)=2x^2-8\) là -8 khi x=0
Bài 2:
a) Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AB=AC(ΔABC cân tại A)
AI là cạnh chung
Do đó: ΔAIB=ΔAIC(cạnh huyền-cạnh góc vuông)
⇒IB=IC(hai cạnh tương ứng)
b) Ta có: AE+EB=AB(E nằm giữa A và B)
AF+FC=AC(F nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AE=AF(gt)
nên EB=FC
Xét ΔEIB và ΔFIC có
EB=FC(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
BI=CI(cmt)
Do đó: ΔEIB=ΔFIC(c-g-c)
⇒IE=IF(hai cạnh tương ứng)
Xét ΔIEF có IE=IF(cmt)
nên ΔEIF cân tại I(định nghĩa tam giác cân)
c) Xét ΔAEF có AE=AF(gt)
nên ΔAEF cân tại A(định nghĩa tam giác cân)
⇒\(\widehat{AEF}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔAEF cân tại A)(1)
Ta có: ΔABC cân tại A(gt)
⇒\(\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(số đo của một góc ở đáy trong ΔABC cân tại A)(2)
Từ (1) và (2) suy ra \(\widehat{AEF}=\widehat{ABC}\)
mà \(\widehat{AEF}\) và \(\widehat{ABC}\) là hai góc ở vị trí đồng vị
nên EF//BC(dấu hiệu nhận biết hai đường thẳng song song)
Ta có: EF//BC(cmt)
AI⊥BC(gt)
Do đó: EF⊥AI(định lí 2 từ vuông góc tới song song)
E C B A D I
A)Xét tam giác ADB và tam giác AEC có
\(\widehat{AEC}=\widehat{ADB=90}^0\left(GT\right)\)
\(AB=AC\left(GT\right)\)
\(\widehat{A}chung\)
Từ ba điều trên => tam giác ABD= tam giác AEC( G.C.G)
=> BD=CE( 2 CẠNH T/Ư)
B) Xét tam giác AED, có: \(AE=AD\)(tam giác ADB= tam giác AEC)
=> Tam giác AED là tam giác cân
C) câu c) mk chư bt lm
c ) +)Xét tam giác AEI và tam giác ADI có :
\(\widehat{E}=\widehat{D}\left(=90\right)^o\)
AE = AD ( cmt )
AI chung
=> Tam giác AEI = Tam giác ADI ( ch - cgv)
=> Góc DAI = Góc EAI ( hai góc tương ứng )
Mà AI nằm giữa AB và AC nên AI là đường phân giác của góc BAC( ĐPCM )
+) Gọi điểm H là giao của BC và AI .
Xét tam giác ABC có :
BD là đường cao thứ nhất
CE là đường cao thứ hai
=> AH phải là đường cao thứ ba (t/c đường cao trong tam giác )
=> \(Ah⊥BC\)
Mà I thuộc AH => \(AI⊥BC\)
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)