\(AH\perp BC\)

1, Chứng minh : HB = HC và AH là tia...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2018

bn tự vẽ hình nha
a) + Tg ABC có B> C (GT) => AC> AB 
 BH, CH lần lượt là hình chiếu của AB và AC lên đường thẳng BC
Mà AC>AB (CMT)=> HC> HB -> đpcm
 



 

27 tháng 3 2019

https://olm.vn/hoi-dap/detail/65705170709.html

tham khảo

hình bạn tự vẽ nhé

a,Trong tam giác cân đường cao ứng vs đỉnh A đồng thời là đường phân giác ứng vs đỉnh đó

=> AH là phân giác của  \(\widehat{BAH}\)

Xét \(\Delta ABH\)\(\Delta ACH\),có:

\(AB=AC\)(vì \(\Delta ABC\)cân tại A)

\(\widehat{BAH}=CAH\)(vì AH là phân giác của \(\widehat{BAH}\))

\(\widehat{AHB}=\widehat{AHC}=90^o\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(ch-gn\right)\)

b,.Xét \(\Delta BAH\)và \(\Delta BED\) có:

\(\widehat{ABH}=\widehat{EBD}\)

\(AB=BE\)

\(DB=BH\)

\(\Rightarrow\Delta BAH=\Delta BED\left(c.g.c\right)\)

\(\Rightarrow\widehat{BAH}=\widehat{BED}\) ( 2 góc tương ứng)

mà 2 góc ở vị trí so le trong

\(\Rightarrow DE//AH\)

c. Xét \(\Delta AHD\) có:

\(\widehat{AHD}=90^o\)

=> DA > AH

mà AH=DE ( \(\Delta BAH=\Delta BED\))

=> DA > DE

Xét \(\Delta DAE\)có:

DA > DE

=> \(\widehat{DEA}>\widehat{DAE}\)

\(\widehat{DAE}=\widehat{BAH}\) ( chứng minh câu b )

=> \(\widehat{BAH}>\widehat{DAE}\)

hay \(\widehat{BAH}>\widehat{DAB}\)

câu d,e mik chw lm đc

k mik nhé!

#sadgirl#

21 tháng 5 2019

a, Xét \(\Delta BAH\)vuông tại H và \(\Delta CAH\)vuông tại H có:

                       BA = CA ( \(\Delta ABC\)cân ở A )

                       AH : cạnh chung

\(\Rightarrow\Delta BAH=\Delta CAH\)( cạnh huyền - cạnh góc vuông )

\(\Rightarrow\hept{\begin{cases}HB=HC\\\widehat{BAH}=\widehat{CAH}\end{cases}}\)

                          => AH là phân giác góc BAC

b, Xét \(\Delta DBE\)và \(\Delta HBA\)có:

               DB = HB ( giả thiết )

                \(\widehat{DBE}=\widehat{HBA}\)( 2 góc đối đỉnh )

                BE = BA ( giả thiết )

=>\(\Delta DBE\)\(\Delta HBA\)( c-g-c )

=> \(\widehat{BDE}=\widehat{BHA}\)

 Mà 2 góc này so le trong

=> AH // DE

c, 

Xét \(\Delta\)AHD có \(\widehat{AHD}=90^o\)

=> DA > AH

mà AH=DE  ( \(\Delta DBE=\Delta HBA\))

=> DA > DE

Xét \(\Delta DAE\) có: DA > DE

=> \(\widehat{DEA}>\widehat{DAE}\) 

mà \(\widehat{DEA}=\widehat{BAH}\) ( chứng minh câu b )

=> \(\widehat{BAH}>\widehat{DAE}\)

hay \(\widehat{BAH}>\widehat{DAB}\)

d, Vì DB = BH mà BH = CH ( chứng minh câu a )

=> DB = BH = CH

=> DB = \(\frac{1}{2}BC\)hay DB = \(\frac{1}{3}CD\)     (1)

    Có:  D là trung điểm EF 

=> CD là đường trung tuyến trong \(\Delta EFC\)  (2)

 Từ (1) và (2)

=> B là trọng tâm trong tam giác EFC

  Mà  FG là  đường trung tuyến trong ​\(\Delta EFC\)( do G là trung điểm CE )

=> FG đi qua B

=> 3 điểm F,B,G thẳng hàng

      

1 tháng 3 2020

Bạn tự vẽ hình nha 

1. Xét tam giác EBH có: BE=BH (gt) -> tan giác EBH cân tại B -> góc BEH = góc BHE

Ta lại có góc ABH = góc BEH + góc BHE (góc ngoài của tam giác EBH); Mà góc BEH = góc BHE (cmt) -> góc ABH = 2 góc BEH; Mà góc ABH = 2 góc ACB (gt)-> góc BEH = góc ACB ( đpcm)

2. Ta có: góc BHE = góc DHC (2 góc đối đỉnh); Mà góc BHE = góc BEH (cmt) và góc BEH = góc ACB (cmt) => góc DHC = góc ACB -> tam giác DHC cân tại D -> DH = DC ( 2 cạnh tương ứng)

Ta có: tam giác AHC vuông tại H -> góc HAC +góc ACB = 90 độ (2 góc ở đáy tam giác vuông ); Mà  góc AHD + góc DHC = 90 độ và góc ACB = góc DHC (cmt) -> góc HAC = góc AHD -> tam giác AHD cân tại D => DA = DH (2 cạnh tương ứng ) 

Vậy DH=DC=DA

3. Ta có tam giác ABB' có: BH = B'H ( H là trung điểm BB') -> AH là đường trung tuyến lại vừa là đường cao -> tam giác ABB' cân tại A -> góc ABH = góc AB'H (2 góc ở đáy)

Xét tam giác AB'C có: góc AB'H = góc B'AC + góc ACB' (góc ngoài); Mà góc ABH = góc AB'H (cmt) -> góc ABH = góc B'AC + góc ACB ; Mà góc ABH = 2 góc ACB'

-> góc B'AC = góc ACB' => tam giác AB'C cân tại B'

4. Bạn vẽ lại hình nha: giả sử tam giác ABC vuông tại A

Xét tam giác ADE và tam giác ABC có: góc A chung và góc BEH = góc ACB (cmt) -> hai tam giác đồng dạng theo trường hợp (g.g) -> góc ADE = góc ABC (2 góc tương ứng) (1) 

Ta có : góc HAD = 90 độ - góc C ( tam giác HAC vuông tại H); Mà góc ABC = 90 độ - góc C ( tam giác ABC vuông tại A) -> góc HAD = góc ABC (2)

Từ (1) và (2) -> góc ADE = góc HAD; Mà góc HAD = góc AHD nên suy ra tam giác AHD đều 

Xét tam giác ADE và tâm giác HAC có: góc EAD = góc CHA = 90 độ (gt); góc ADE = góc HAC (cmt); AD = AH (tam giác AHD đều) => tam giác ADE = tam giác HAC theo trường hợp (g.c.g)

=> DE = AC (2 cạnh tương ứng) => DE2 = AC2 ; Mà AC2 = BC2 - AB2 (định lí Py-ta-go trong tam giác ABC) => DE2 = BC2 - AB2 (đpcm) 

Học tốt nhé 🙋‍♀️🙋‍♀️🙋‍♀️💗💗💗

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0
27 tháng 4 2019

Sửa ở trên đầu tiên: Cho \(\Delta\)ABC cân tại A, kẻ AH \(\perp\)BC (H \(\in\)BC).