Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
=>góc BAH=góc CAH
=>AH là phân giác của góc BAC
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN và MH=MN
=>AH là trung trực của MN
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Xét ΔECB có
CA là trung tuyến
CA=BE/2
=>ΔECB vuông tại C
Xét tứ giác ADCH có
góc ADC=góc AHC=góc DCH=90 độ
=>ADCH là hcn
=>AD vuông góc AH
a: Xet ΔAHB và ΔAHC có
AB=AC
AH chung
HB=HC
=>ΔAHB=ΔAHC
b: Xet ΔAMH vuông tại M và ΔANH vuông tại N co
AH chung
góc MAH=góc NAH
=>ΔAMH=ΔANH
=>AM=AN và HM=HN
=>ΔHMN cân tại H
c: Xét ΔABC có AM/AB=AN/AC
nên MN//CB
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét ΔAHM vuông tại M và ΔAHN vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
hay ΔAMN cân tại A
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
b: Xét ΔAHM vuông tại M và ΔAHN vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN
hay ΔAMN cân tại A
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có
AH chung
\(\widehat{MAH}=\widehat{NAH}\)
Do đó: ΔAMH=ΔANH
Suy ra: AM=AN và HM=HN
=>AH là đường trung trực của MN
Bài 5:
a) Chứng minh ∆AHB = ∆AHC và AH là tia phân giác của góc BAC.
Vì ∆ABC cân tại A nên:
- AB = AC (1)
- Góc ABC = góc ACB (2)
Xét ∆AHB và ∆AHC có:
- Cạnh AH chung
- AB = AC (từ (1))
- Góc AHB = góc AHC (từ (2) và AH ⊥ BC)
Vậy ∆AHB = ∆AHC (c.g.c)
Suy ra:
- HB = HC
- Góc BAH = góc CAH
Do đó, AH là tia phân giác của góc BAC.
b) Chứng minh AH vuông góc với MN
Xét ∆AHM và ∆AHN có:
- AH chung
- Góc AHM = góc AHN (= 90 độ)
- AM = AN (vì AH là tia phân giác của góc BAC)
Vậy ∆AHM = ∆AHN (cạnh huyền - góc nhọn)
Suy ra: HM = HN
Do đó, AH là đường trung trực của MN.
Vậy AH vuông góc với MN.
c) Chứng minh P, Q, K thẳng hàng
Vì H là trung điểm của MP nên HP = HM.
Xét ∆HMP và ∆HNP có:
- HP = HN (cmt)
- MH = NH (cmt)
- NP chung
Vậy ∆HMP = ∆HNP (c.c.c)
Suy ra: góc MHP = góc NHP = 90 độ.
Do đó, PQ ⊥ MH và PQ ⊥ NH.
Mà AH ⊥ MN nên PQ // AH (1)
Ta lại có: K ∈ MN và AH ⊥ MN nên K ∈ PQ (2)
Từ (1) và (2) suy ra: PQ đi qua điểm K.
Vậy P, Q, K thẳng hàng.
Cạnh huyền - góc nhọn