K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD. a) Tính số đo góc C và chứng minh BD = CD b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E. Chứng minh ΔBME = ΔAMD c) Chứng minh ED = AC Bài 3. Cho ΔABC vuông tại A có AB < AC, AH là đường cao (H ∈BC). Trên cạnh BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC) a) Chứng minh ΔACM cân và ΔCKM =ΔCHA b) Hai đoạn...
Đọc tiếp

Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD.
a) Tính số đo góc C và chứng minh BD = CD
b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E.
Chứng minh ΔBME = ΔAMD
c) Chứng minh ED = AC
Bài 3. Cho ΔABC vuông tại A có AB < AC, AH là đường cao (H ∈BC). Trên cạnh
BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC)
a) Chứng minh ΔACM cân và ΔCKM =ΔCHA
b) Hai đoạn thẳng MK và AH cắt nhau tại O. Chứng minh CO là tia phân giác của
ACB
c) Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc với
AB.
Bài 4. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Lấy điểm K sao
cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.

Giúp mik với mik đang cần gấp

0
Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD. a) Tính số đo góc C và chứng minh BD = CD b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E. Chứng minh ΔBME = ΔAMD c) Chứng minh ED = AC Bài 3. Cho ΔABC vuông tại A có AB < AC, AH là đường cao (H ∈BC). Trên cạnh BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC) a) Chứng minh ΔACM cân và ΔCKM =ΔCHA b) Hai đoạn...
Đọc tiếp

Bài 2. Cho ΔABC vuông cân tại A. Kẻ đường cao AD.
a) Tính số đo góc C và chứng minh BD = CD
b) Gọi M là trung điểm BD, đường thẳng vuông góc với BC tại B cắt tia AM tại E.
Chứng minh ΔBME = ΔAMD
c) Chứng minh ED = AC
Bài 3. Cho ΔABC vuông tại A có AB < AC, AH là đường cao (H ∈BC). Trên cạnh
BC lấy điểm M sao cho CM = CA. Vẽ MK vuông góc với AC (K∈ AC)
a) Chứng minh ΔACM cân và ΔCKM =ΔCHA
b) Hai đoạn thẳng MK và AH cắt nhau tại O. Chứng minh CO là tia phân giác của
ACB
c) Trên cạnh AB lấy điểm N sao cho AN = AH. Chứng minh MN vuông góc với
AB.
Bài 4. Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Lấy điểm K sao
cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.

0

a: AM=AB/2

AN=AC/2

mà AB=AC

nên AM=AN

b: Xét tứ giác AGCK có 

N là trung điểm của AC
N là trung điểm của GK

Do đó: AGCK là hình bình hành

Suy ra: AG//CK

c: Xét ΔABC có 

BN là đường trung tuyến

CM là đường trung tuyến

BN cắt CM tại G

Do đó: G là trọng tâm của ΔABC

Suy ra: BG=2GN

mà GK=2GN

nên BG=GK

3 tháng 9 2020

a, Ta có: \(\Delta ABH\perp H\)

=>. BH < AB ( vì AB là cạnh huyền )

Mà AB = BD (gt) nên:

=> BH < BD

=> H nằm giửa B và D (đpcm)

2 tháng 9 2020

b, Gọi I là giao điểm của BE và AD.

Xét tam giác ABE vuông tại A và tam giác DBE vuông tại D có:

BE chung

AB = DB (gt)

=> tam giác ABE = tam giác DBE (ch-cgv) (1)

=> ABE = DBE (hai góc t/ứng)

=> BI là tia p/giác của góc ABD.

Do tam giác ABD cân tại B có BI là tia p/giác của góc ABD nên:

=> BI cũng là đường trung trực của tam giác ABD.

hay BE là đường trung trực của BD. (đpcm)

c, Do AH song song với DE (vì cùng vuông góc với BC) nên:

=> HAD = EDA (vì so le trong) (3)

Từ (1) (câu b) => AE = ED => tam giác AED cân tại E.

=> EDA = EAD (4)

TỪ (3) và (4)

=> HAD = DAD

=> AD là tia p/giác của góc HAC (đpcm).

Chúc bạn học tốt!!

1 tháng 5 2016

Toán hình học lớp 7 học kì 2

2 tháng 9 2020

Rồi thì h mk nhờ bạn thực hiện như cái mà bạn đã nói đi.

1 tháng 9 2020

a, Do tam giác OBA cân tại O (vì AO=BO) có OC là tia p/giác (gt) nên:

=> OC cũng là đường cao (1)

và OC cũng là đường trung

tuyến (2)

Từ (1)=> OC vuông góc vs AB (đpcm).

Từ (2)=> BC=AC

Mà C nằm giữa A và B nên:

=> C là trung điểm của AB (đpcm).

b, xét hai tam giác OBC và MAC

OB=OA (gt)

BCO=ACM ( vì đđ)

OC=MC (gt)

=> tam giác OBC bằng tam giác MAC (c-g-c)

=> OBC = MAC (hai góc t/ứng)

Mà OBC và MAC ở vị trí slt nên:

=> OB song song AM (đpcm).

Ý thứ hai của câu b cg cm tương tự

Bạn chỉ cần xét hai tam giác là BCM và ACM rồi suy ra hai góc t/ứng mà hai góc đó nó cg ở vị trí giống như trên.

c, Do tam giác BOM = tam giác AOM (c-g-c) (tự cm)

=> OBM = OAM (3)(hai góc t/ứng).

và BM = AM (hai cạnh t/ứng).

Ta có: IBM + MBO =180 (vì kề bù) (4)

KAM + MAO=180 (5) (vì kề bù).

Từ (3); (4) và (5)

=> MBI = MAK

Lại có: hai tam giác MBI và tam giác MAK (ch - gn) (tự cm )

=> BI = AK.

Câu d mk đg mắc việc nên đến sau mk.lm cho nha nhớ theo dõi mk vs nha.

3 tháng 5 2016

a)Xét tam giác BAD và BED(đều là ta giác vuông)

         BD là cạnh chung

          ABD=DBE(Vì BD là tia p/giác)

\(\Rightarrow\)tam giác BAD=tam giác BED(cạnh huyền góc nhọn)

\(\Rightarrow\)AB=BE(cặp cạnh tương ứng)

b)Vì tam giác BAD=tam giác BED(cạnh huyền góc nhọn)

  \(\Rightarrow\)DA=DE(cặp cạnh tương ứng)

Xét tam giác ADF và EDCđều là ta giác vuông)

     DA=DE(CMT)

     ADF=EDC(đđ)

\(\Rightarrow\)tam giác ADF=tam giác EDC(cạnh góc vuông góc nhọn)

\(\Rightarrow\)DF=DC(cặp cạnh tương ứng)

Do đó tam giác DFC cân tại D(vì DF=DC)

c)Vì DA=DE(CMT)\(\Rightarrow\)tam giác DAE can tại D

Mà ADE=FDC(đđ)

     Mà hai tam giác DAE và CDF cân 

Do đó:DAE=DEA=DFC=DCF

\(\Rightarrow\)AE//FC vì DFC=DAE