K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

B B C C H H A A M M N N

a) Xét hai tam giác vuông AHB và AHC có:

Cạnh AH chung

AB = AC (Tam giác ABC cân tại A)

\(\Rightarrow\Delta AHB=\Delta AHC\)  (Cạnh huyền - cạnh góc vuông)

b) Do \(\Delta AHB=\Delta AHC\Rightarrow\widehat{MAH}=\widehat{NAH}\)

Xét hai tam giác vuông AMH và ANH có:

Cạnh AH chung

\(\widehat{MAH}=\widehat{NAH}\)

\(\Rightarrow\Delta AMH=\Delta ANH\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow AM=AN\)

c) Xét tam giác AMN cân tại A nên \(\widehat{AMN}=\frac{180^o-\widehat{BAC}}{2}\)

Tam giác ABC cũng cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\)

Suy ra \(\widehat{AMN}=\widehat{ABC}\)

Chúng lại ở vị trí đồng vị nên MN // BC.

d) Xét hai tam giác vuông BMH và CNH có:

BH = CH   (Do \(\Delta AHB=\Delta AHC\))

\(\widehat{MBH}=\widehat{NCH}\)

\(\Rightarrow\Delta BMH=\Delta CNH\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow MH=NH\)

\(\Rightarrow MH^2=NH^2\Rightarrow BH^2-MB^2=AH^2-AN^2\)

 \(AH^2+BM^2=AN^2+BH^2\)

a: Xet ΔAHB và ΔAHC có

AB=AC

AH chung

HB=HC

=>ΔAHB=ΔAHC

b: Xet ΔAMH vuông tại M và ΔANH vuông tại N co

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>AM=AN và HM=HN

=>ΔHMN cân tại H

c: Xét ΔABC có AM/AB=AN/AC

nên MN//CB

16 tháng 3 2022

Xét \(\Delta AHB\) vuông tại H và \(\Delta AHC\) vuông tại H:

\(AB=AC\)  (\(\Delta ABC\) cân tại A).

\(\widehat{B}=\widehat{C}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\Delta AHB=\) \(\Delta AHC\left(ch-gn\right).\)

\(\Rightarrow\widehat{BAH}=\widehat{CAH}.\)

Xét \(\Delta AMH\) vuông tại M và \(\Delta ANH\) vuông tại N:

\(AHchung.\\ \widehat{MAH}=\widehat{NAH}\left(\widehat{BAH}=\widehat{CAH}\right).\\ \Rightarrow\Delta AMH=\Delta ANH\left(ch-gn\right).\)

Xét \(\Delta AMN:AM=AN\left(\Delta AMH=\Delta ANH\right).\)

\(\Rightarrow\Delta AMN\) cân tại A.

\(\Rightarrow\widehat{AMN}=\dfrac{180^o-\widehat{A}}{2}.\)

Mà \(\widehat{ABC}=\dfrac{180^o-\widehat{A}}{2}\) (\(\Delta ABC\) cân tại A).

\(\Rightarrow\widehat{AMN}=\widehat{ABC}.\\ \Rightarrow MN//BC.\)

a: Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC

AH chung

Do đó: ΔABH=ΔACH

b: Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

\(\widehat{MAH}=\widehat{NAH}\)

Do đó: ΔAMH=ΔANH

Suy ra: AM=AN

hay ΔAMN cân tại A

c: Xét ΔABC có AM/AB=AN/AC

nên MN//BC

8 tháng 2

hinh đâu bẹn để mik xem có đ ko ?

Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

=>ΔAHB=ΔAHC

=>góc BAH=góc CAH

Xét ΔAMH vuông tại M và ΔANH vuông tại N có

AH chung

góc MAH=góc NAH

=>ΔAMH=ΔANH

=>NH=MH

AH^2-AN^2=NH^2

BH^2-BM^2=MH^2

mà NH=MH

nên AH^2-AN^2=BH^2-BM^2

=>AH^2+BM^2=AN^2+BH^2

a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có 

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)

b) Ta có: ΔAHB=ΔAHC(cmt)

nên \(\widehat{BAH}=\widehat{CAH}\)(hai góc tương ứng)

hay \(\widehat{MAH}=\widehat{NAH}\)

Xét ΔMAH vuông tại M và ΔNAH vuông tại N có 

AH chung

\(\widehat{MAH}=\widehat{NAH}\)(cmt)

Do đó: ΔMAH=ΔNAH(cạnh huyền-góc nhọn)

Suy ra: AM=AN(hai cạnh tương ứng)

Xét ΔMAN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

 

A B C H D E

mk vẽ hơi xấu thông cảm

3 tháng 3 2016

k s bạn , thanks pạn nhìu

12 tháng 3 2022

a, Xét tam giác AHB và tam giác AHC có 

AH _ chung 

AB = AC 

Vậy tam giác AHB~ tam giác AHC (ch-cgv) 

Ta có tam giác ABC cân tại A, có AH là đường cao 

đồng thười là đường pg 

b, Xét tam giác AMH và tam giác NAH có 

HA _ chung 

^MAH = ^NAH 

Vậy tam giác AMH = tam giác NAH (ch-gn) 

=> AM = AN ( 2 cạnh tương ứng ) 

c, Ta có AM/AB = AN/AC => MN // BC 

d, Ta có \(AH^2+BM^2=AN^2+BH^2\)

Xét tam giác BMH vuông tại M \(MB^2=BH^2-MH^2\)

Thay vào ta được \(AH^2+BH^2-MH^2=AN^2+BH^2\Leftrightarrow AH^2-MH^2=AN^2\)

Lại có AM = AN (cmt) 

\(AM^2=AH^2-MH^2\)( luôn đúng trong tam giác AMH vuông tại M) 

Vậy ta có đpcm 

 

12 tháng 3 2022

a vẽ hình cho e đc k ạ

17 tháng 2 2016

Mình mới học lớp 6 thôi

17 tháng 2 2016

@trần thị giang : thì mình KHÔNG hỏi bạn, nếu ai biết thì trả lời, CÂM ĐƯỢC RỒI