Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác AHB và tam giác AHC có : ^AHC = ^AHB = 90
AB = AC do tam giác ABC cân tại A (gt)
AH chung
=> tam giác AHC = tam giác AHB (ch-cgv)
=> HB = HC (đn)
b, xét tam giác HEC và tam giác HDB có : ^HEC = ^HDB = 90
HC = HB (câu a)
^ABC = ^ACB do tam giác ABC cân tại A (gt)
=> tam giác HEC = tam giác HDB (ch-gn)
=> HE = HD (đn)
=> tam giác HED cân tại H (đn)
c, tam giác ABC cân tại A (gt) => = ^ACB = (180 - ^BAC) : 2 (tc)
^BAC= 120 (gt)
=> ^ACB = (180 - 120) : 2 = 30
tam giác vuông EHC vuông tại E (gt) => ^EhC = 90 - ^ACB
=> ^EHC = 60
^EHC = ^DHB
=> ^EHC = ^DHB = 60
^EHC + ^DHB + ^DHE = 180
=> ^DHE = 60
mà tam giác DHE cân tại H (câu b)
=> tam giác DHE đều
d, tam giác CEH = tam giác BDH (câu b)
=> CE = BD (đn)
AB = AC (câu a)
CE + EA = AC
BD + DA = AB
=> AE = AD
=> tam giác ADE cân tại A => ^AED = (180 - ^BAC) : 2
tam giác ABC cân tại A (gt) => ^ACB = (180 - ^BAC) : 2
=> ^AED = ^ACB mà 2 góc này đồng vị
=> DE//BC (đl)
hình em tự vẽ nhé
a) xét \(\Delta ABC\)cân tại A
=> \(AB=AC\)(t/c tam giác cân )
\(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)(t/c tam giác cân )
xét \(\Delta ABH\)và \(\Delta ACH\)
\(AB=AC\left(cmt\right)\)
\(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
\(\widehat{AHB}=\widehat{AHC}\left(gt\right)\)
=>\(\Delta ABH\)=\(\Delta ACH\)(ch-gn)
=> HB=HC(2c tứ)
=> \(\widehat{BAH}=\widehat{CAH}\left(2gtu\right)\)
b) xét \(\Delta BHD\)và \(\Delta CHE\)
\(\widehat{BDH}=\widehat{CEH}\left(gt\right)\)
\(BH=HC\left(cmt\right)\)
\(\widehat{DBH}=\widehat{ECH}\left(cmt\right)\)
=>\(\Delta BHD\)=\(\Delta CHE\)(ch-gn)
=>HD=HE(2c tứ)
=> \(\Delta HDE\)cân tại H ( đ/n)
ta có \(\widehat{BAH}+\widehat{CAH}=\widehat{BAC}\)
lại có:\(\widehat{BAH}=\widehat{CAH}\left(2gtu\right)\)
mà \(\widehat{BAC}=120^o\)
=>\(\widehat{BAH}=\widehat{CAH}=60^o\)
xét \(\Delta ADH\)\(:\widehat{ADH}+\widehat{DAH}+\widehat{DHA}=180^o\)(đ/lý)
thay số :
rồi suy ra ^DHA = 30 độ(1)
xét nốt \(\Delta AHE\)rồi suy ra ^AHE=30 độ(2) ( cách làm tương tự tam giác ADH)
từ (1) và (2) =>\(\Delta\) DHE - \(\Delta\)đều
d) HD : chứng minh \(\Delta ADE\)cân tại A
=> \(\widehat{ADE}=\widehat{AED}=\frac{180^o-\widehat{A}}{2}\)
mà \(\Rightarrow\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\)(cmt)
=> \(\widehat{ADE}=\widehat{ABC}\)
mà 2 góc này lại ở vị trí đồng vị của DE và BH
=> DE//BH
bye mik đi ngủ đây
a) Xét hai tam giác vuông $AHB$ và $AHC$ có:
$AH$ là cạnh chung;
$AB = AC$ (gt);
Suy ra $\Delta AHB=\Delta AHC$ (cạnh huyền - cạnh góc vuông)
Suy ra $HB = HC$ (Hai cạnh tương ứng)
$\widehat{BAH} = \widehat{CAH}$ (hai góc tương ứng).
b) Xét hai tam giác vuông $ADH$ và $AEH$ có:
$AH$ là cạnh chung;
$\widehat{BAH} = \widehat{CAH}$ (cmt);
Suy ra $\Delta ADH=\Delta AEH$ (cạnh huyền - góc nhọn).
Suy ra $HD = HE$ (Hai cạnh tương ứng) nên $\Delta HDE$ cân tại $H$.
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
hay HB=HC
Ta có: ΔABC cân tại A
mà AH là đường cao
nên AH là đường phân giác
hay \(\widehat{BAH}=\widehat{CAH}\)
b: BH=CH=BC/2=4(cm)
nên AH=3(cm)
c: Xét ΔAEH vuông tại E và ΔADH vuông tại D có
AH chung
\(\widehat{EAH}=\widehat{DAH}\)
DO đó: ΔAEH=ΔADH
Suy ra: HE=HD
hay ΔHDE cân tại H
a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC
b.áp dụng định lý pitago ta có:
\(AB^2=AH^2+HB^2\)
\(5^2=AH^2+\left(8:2\right)^2\)
\(AH=\sqrt{5^2-4^2}=3cm\)
c.Xét tam giác vuông BHD và tam giác vuông CHE, có:
BH = CH ( cmt )
góc B = góc C ( ABC cân )
Vậy tam giác vuông BHD = tam giác vuông CHE
=> HD = HE
=> HDE cân tại H
d.ta có AB = AD + DB
AC = AE + EC
Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )
=> AD = AE
=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )
Chúc bạn học tốt !!!!
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểmcủa BC
hay HB=HC
b: Xét ΔADH vuông tạiD và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra HD=HE
hay ΔHDE cân tại H
mk vẽ hơi xấu thông cảm
k s bạn , thanks pạn nhìu