K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2020

                                                                       giúp mik với mik cảm ơn rất nhiều

25 tháng 2 2020

A B C E F 1 2 H

A)TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN

=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)

XÉT\(\Delta ABC\)CÂN TẠI A

\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)

XÉT \(\Delta ABH\)\(\Delta ACH\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

\(AB=AC\left(GT\right)\)

\(\widehat{B}=\widehat{C}\left(GT\right)\)

\(\Rightarrow\Delta ABH=\Delta ACH\left(G-C-G\right)\)

B)

TRONG TAM GIÁC CÂN ĐƯỜNG CAO CŨNG LÀ DƯỜNG PHÂN GIÁC, PHÁP TUYẾN,TRUNG TUYẾN

=> AH LÀ PHÂN GIÁC CỦA \(\widehat{BAC}\)

C)VÌ\(\Delta ABH=\Delta ACH\left(CMT\right)\)

=>HB=HC (HAI CẠNH TƯƠNG ỨNG)

D)XÉT\(\Delta AEH\)\(\Delta AFH\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

D) XÉT TAM GIÁC LÀ ĐƯỢC

27 tháng 6 2020

a, xét tam giác AHB và tg AHC có : ^AHC = ^AHB = 90

AB = AC do tg ABC cân tại A (gt)

^ABC = ^ACB do tg ABC ... 

=> tg AHB = tg AHC (ch-gn)

b, tg ABC cân tại A (Gt) mà có AH là đường cao   (1)

=> AH đồng thời là đường trung tuyến

=> H là trung điểm của BC 

=> BH = 1/2BC = 6 cm

tg AHB vuông tại H (gt) => AB^2 = AH^2 + HB^2 (ĐL pytago)

AB = 10 (gt)

=> AH = 8 do AH > 0

c,   (1) => AH đồng thời là pg của ^BAC (đl)

=> ^CAH = ^BAH (đn)

có HE // AC (gt) ; ^CAH slt ^AHE => ^CAH = ^AHE (đl)

=> ^BAH = ^AHE 

=> tg AHE cân tại E (dh)

16 tháng 2 2017

XÉT TAM GIÁC AHB VÀ TAM GIÁC AHC CÓ

AB=AC(GT)

AH CHUNG

GÓC AHB = GÓC AHC

=>TAM GIÁC AHB=TAM GIÁC AHC (CGC)

C,XÉT TAM GIÁC AHE VÀ TAM GIÁC AFH CÓ

AH CHUNG

GÓC AEH=GÓC AFH =90*

A1=A2

=>TAM GIÁC AHE=TAM GIÁC AFH (GCG)

=>HE=HF (CẠNH TƯƠNG ỨNG) A B C H

27 tháng 4 2021

ghhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

27 tháng 4 2021

mấy bạn bớt nhắn linh tinh lên đây đi, olm là nơi học bài và hỏi bài chứ không phải nhắn lung tung

8 tháng 2 2020

A B C H D E F 1 2

a. Vì \(\Delta ABC\)cân tại A  \(\Rightarrow\)AB = AC, góc B = góc C.

Xét \(\Delta ABH\)và \(\Delta ACH\)có :

AB = AC

AH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền - cạnh góc vuông).

b.Vì \(\Delta ABH=\Delta ACH\)\(\Rightarrow\)góc AHB = góc AHC ( góc tương ứng )

Mà góc AHB +AHC = 180 độ ( kề bù ) => góc AHB = AHC = 90 độ => AH\(\perp\)BC.

c.Xét tam giac HDB và HEC có :

HB = HC ( vì tg ABH = ACH )

góc B = góc C

=> tam giác HDB = HDC ( cạnh huyền - góc nhọn )

=>BD = CE ( cạnh tương ứng )

Vì AB = AC => AD = AE.

Vì tg AHB = AHC => góc A1 = A2 ( góc tương ứng )

Xét tg AFD và AFE có :

AD = AE

Góc A1 = A2

AF là canh chung

=> Tg AFD = AFE ( c-g-c)

=> góc ADF = AEF ( góc tương ứng )

Ta có : góc A + ADF + AEF = góc A + ABC + ACB = 180 độ

=> 2.ADF = 2.ABC => Góc ADF = ABC mà 2 góc này nằm ở vị trí đồng vị => DE \(//\)BC.

24 tháng 3 2020

A B C H D E

a) Xét \(\Delta BAH\)và \(\Delta CAH\)có: 

AH chung

\(\widehat{BAH}=\widehat{CAH}\)(AH là phân giác \(\widehat{BAC}\))

AB=AC (\(\Delta\)ABC cân tại A)

=> \(\Delta BAH=\Delta CAH\left(cgc\right)\)

b) Có AH là phân giác \(\widehat{BAC}\left(gt\right)\)\(\Delta\)ABC cân tại A (gt)

=> AM là đường phân giác trong của tam giác ABC cân tại A

=> AM trung với đường cao và đường trung tuyến

=> AM _|_ BC(đpcm)

d)

1 tháng 5 2019

A B C D E H

a, Xét \(\Delta ABH\) và\(\Delta ACH\) CÓ:

\(AHchung\)

AB = AC 

\(\widehat{AHB}=\widehat{AHC}\)

\(\Rightarrow\Delta ABH=\Delta ACH\)(cạnh huyền cạnh góc vuông)

=> BH = HC ( 2 cạnh tương ứng )

b,Do BC = 8cm => BH = 4cm 

Áp dụng định lý Py ta go vào tam giác vuông ABH có :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH^2=AB^2-BH^2\)\(\Rightarrow AH^2=5^2-4^2=25-16=9\)\(\Rightarrow AH=3\left(cm\right)\)

c,\(Xét\Delta DBH\) và\(\Delta ECH\) có :

\(\widehat{ABH}=\widehat{ACH}\)

BH = HC

\(\widehat{BDH}=\widehat{CEH}\)

\(\Rightarrow\Delta DBH=\Delta ECH\)\(\Rightarrow DH=EH\)=> \(\Delta DHE\) cân tại H

cho mình 1 tym nha