Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét △MIA và △BIH có
MI=BI( giả thiết)
góc MIA =góc BIH(2 góc đối đỉnh)
IA=IH(Vì I là trung điểm của AH)
=> △MIA = △BIH(c-g-c)
=>góc IMA=góc IBH (2 góc tương ứng)
hay góc BMA=góc MBH mà 2 góc này là 2 góc so le trong của đường thẳng MB cắt MA và BH
=>MA//BH
bạn tự làm câu b,c nhé
t lười vẽ hình lắm, vô cùng xin lỗi :(
a) Vì ∆ ABC cân tại A nên AH vừa là đường cao, vừa là trung tuyến => HB = HC = 12:2 = 6
Áp dụng định lí Py-ta-go cho ∆ AHB, ta được: AH2 + BH2 = AB2 => AB2 = 122 + 92 = 225 = 152 => AB = 15 = AC
=> PABC = AB + AC + BC = 15 + 15 + 18 = 48
b) Vì BM = CN (gt) ; HB = HC (cmt) => HB + BM = HC + CN => HM = HN => AH là trung tuyến của ∆ AMN (1)
Lại có: AH ┴ BC hay AH ┴ MN => AH là đường cao của ∆ AMN (2)
Từ (1) và (2) =>∆ AMN cân tại A
c) Xét ∆ BIM và ∆ CKN vuông tại I và K có:
MB = NC (gt) ; ^KNC = ^IMB (∆AMN cân tại A) => ∆ BIM = ∆ CKN ( ch - gn ) => MI = KN
Mà AM = AN (∆AMN cân tại A) => AI = AK => ∆ AIK cân tại A
=> ^AIK = ^AKI = ( 180o - ^MAN ) : 2 = ^AMN = ^ANM => IK // MN (đồng vị) hay IK // BC
d) Vì IK // MN => ^IKN = ^KCN (slt) ; ^KIB = ^IBM (slt)
Lại có: ^IBM = ^KCN ( vì ∆BIM=∆CKN ) => ^IKN = ^KIB hay ^OIK = ^OKI => ∆OKI cân tại O => OK = OI
Xét ∆ AIO và ∆ AKO có:
AI = AK ( ∆AIK cân tại A) ; OK = OI (cmt) ; AO (chung) => ∆ AIO = ∆ AKO ( c-c-c )
=> ^OAI = ^OAK (3)
Vì ∆AMN cân tại A => AH là phân giác của ∆AMN.=> ^HAM = ^HAN hay ^HAI = ^HAK (4)
Từ (3) và (4) => A, O, H thẳng hàng.
Ya, that's it!
a)
Xét \(\Delta ABH\)và \(\Delta ACH\)có :
\(AB=AC\left(GT\right)\) (1)
\(BH=CH\)( Vì H là trung điểm của BC ) (2)
\(AH\): Cạnh chung (3)
Từ (1);(2) và (3)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.c.c\right)\)
=> \(\Rightarrow\widehat{BAH}=\widehat{CAH}\)( Cặp góc tương ứng)
=> AH là đường phân giác
Vì AB = AC (GT)
=> \(\Delta BAC\)cân
Xét \(\Delta BAC\)có :
\(\widehat{BAH}=\widehat{CAH}\)
=> AH là đường cao của tam giác
( vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường cao)
\(\Rightarrow AH\perp BC\)
Ta có : H là trung điểm của BC
Mà BC = 8cm
=> HB=HC = 4cm
Áp dụng định lí Py-ta-go cho tam giác vuông BHA có :
\(AB^2=AH^2+BH^2\)
\(\Rightarrow5^2=AH^2+4^2\)
\(\Rightarrow25=AH^2+16\)
\(\Rightarrow AH^2=25-16\)
\(\Rightarrow AH^2=9\)
\(\Rightarrow AH=\sqrt{9}\)
\(\Rightarrow AH=3cm\)
Câu b chứng minh cái gì vậy bạn .
a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\) (Hai góc đối đỉnh)
Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)
Xét tam giác vuông BDM và CEN có:
BD = CE
\(\widehat{ECN}=\widehat{DBM}\) (cmt)
\(\Rightarrow\Delta BDM=\Delta CEN\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow BM=CN\) (Hai cạnh tương ứng)
b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)
Ta thấy MD và NE cùng vuông góc BC nên MD // NE
Suy ra \(\widehat{DMI}=\widehat{ENI}\) (Hai góc so le trong)
Xét tam giác vuông MDI và NEI có:
MD = NE
\(\widehat{DMI}=\widehat{ENI}\)
\(\Rightarrow\Delta MDI=\Delta NEI\) (Cạnh góc vuông và góc nhọn kề)
\(\Rightarrow MI=NI\)
Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.
c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\) (1) và BK = CK
Xét tam giác BMK và CNK có:
BM = CN (cma)
MK = NK (cmb)
BK = CK (cmt)
\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\) (2)
Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)
Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)
Vậy \(KC\perp AN\)
a) Chứng minh ΔAIB = ΔCIK (c - g - c)
=> Góc BAC = Góc ACK
Chứng minh ΔAIK = ΔCIB (c - g - c)
=> Góc CAK = Góc ACB
Xét tam giác ABC và tam giác ACK có:
Góc BAC = Góc ACK (cmt)
AC: chung
Góc CAK = Góc ACB (cmt)
=> Tam giác ABC = Tam giác CKA (c - g - c)
=> AC = CK (2 cạnh tương ứng)
b) Tam giác ABC có AH là đường trung tueyesn, BI là đường trung tueeys, AH và BI cắt nhau tại G
=> G là trọng tâm của tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}AG=\dfrac{2}{3}AH\\CG=\dfrac{2}{3}CM\end{matrix}\right.\)
Có; \(AG+GH=AH\)
\(\Rightarrow\dfrac{2}{3}AH+GH=AH\)
\(\Rightarrow GH=\dfrac{1}{3}AH\)
\(\dfrac{AG}{GH}=\dfrac{\dfrac{2}{3}AH}{\dfrac{1}{3}AH}=2\)
Chứng minh tương tự: \(\dfrac{CG}{MG}=2\)
\(\Rightarrow\dfrac{AG}{GH}=\dfrac{CG}{MG}\left(=2\right)\)
=> MH // AC