Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có; ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
góc B=góc C
Do đó: ΔHBD=ΔHCE
=>HD=HE
a: ΔABC cân tại A
mà AH là phân giác
nên H là trung điểm của BC
=>HB=HC
b: Xét ΔHDB vuông tại D và ΔHEC vuông tại E có
HB=HC
góc B=góc C
Do đó: ΔHDB=ΔHEC
d) Vì tam giác DHB=tam giác EHC(cmb)=>HD=HE(2 cạnh tương ứng)
Mà H thuộc EF và HD=HF(theo đề bài)
=>HE=HD=HF=DF/2
Tam giác DEF có đường trung tuyến EH bằng 1/2 đáy DF tương ứng=>Tam giác DEF vuông tại E.
a, Xét hai tam giác ABH và tam giác ADH có
BH=HD(giả thiết)
góc BHA=góc DHA(=90 độ)
AH chung
Suy ra ABH=ADH(dpcm)
b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
HB=HE
Do đó: ΔAHB=ΔAHE
b: Xét tứ giác ABDE có
H là trung điểm của AD
H là trung điểm của BE
Do đó: ABDE là hình bình hành
Suy ra: DE//AB
c: Xét ΔEAD có
EH là đường cao
EH là đường trung tuyến
Do đó: ΔEAD cân tại E
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
DO đó: ΔCAD cân tại C
Xét ΔEAC và ΔEDC có
EA=ED
EC chung
AC=DC
Do đó: ΔEAC=ΔEDC
Suy ra: \(\widehat{EAC}=\widehat{EDC}\)
GT,KL tự viết (hình cũng tự vẽ)
a, Xét △AHB và △AHE có :
AH : chung
\(\widehat{AHB}=\widehat{AHE}(=90^o)\)
HB = HE (GT)
=> △AHB = △AHE (c.g.c)
b, Xét △AHB và △DHE có :
AH = DH(GT)
\(\widehat{AHB}=\widehat{DHE}(=90^o)\)
BH = EH (GT)
=> △AHB = △DHE (c.g.c)
=> \(\widehat{HAB}=\widehat{HDE}\) (2 góc tương ứng)
Mà 2 góc này ở vị trí so le trong
=> DE // AB
c, Xét △AHC và △DHC có :
HC : chung
\(\widehat{AHC}=\widehat{DHC}(=90^o)\)
AH = DH (GT)
=> △AHC = △DHC (c.g.c)
=> AC = DC (2 cạnh tương ứng)
\(\widehat{ACH}=\widehat{DCH}\) (2 góc tương ứng)
Xét △EAC và △EDC có :
EC : chung
\(\widehat{ECA}=\widehat{ECD}(cmt)\)
AC = DC (cmt)
=> △EAC = △EDC (c.g.c)
=> \(\widehat{EAC}=\widehat{EDC}\) (2 góc tương ứng)
d, Vì MN // AD => \(\dfrac{ME}{DE}=\dfrac{MN}{AD}\)
Xét △MEN và △DEA có :
\(\dfrac{ME}{DE}=\dfrac{MN}{AD} (cmt)\)
\(\widehat{EMN}=\widehat{EDA}( so le)\)
=> △MEN = △DEA (c.g.c)
=> \(\widehat{MEN}=\widehat{DEA}\) (2 góc tương ứng)
Mà 2 góc ở vị trí đối đỉnh với nhau
=> A , E , N thẳng hàng
a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có
AH chung
HB=HE
Do đó: ΔAHB=ΔAHE
b: Xét tứ giác ABDE có
H là trung điểm chung của AD và BE
=>ABDE là hình bình hành
=>DE//AB
c: Xét ΔCAD có
CH vừa là đường cao, vừa là đường trung tuyến
Do đó: ΔCAD cân tại C
=>CA=CD
Xét ΔEAD có
EH là đường cao, là đường trung tuyến
Do đó: ΔEAD cân tại E
=>EA=ED
Xét ΔCAE và ΔCDE có
CA=CD
AE=DE
CE chung
Do đó; ΔCAE=ΔCDE
=>\(\widehat{EAC}=\widehat{EDC}\)
d: Xét ΔNEA và ΔMED có
\(\widehat{NEA}=\widehat{MED}\)
EA=ED
\(\widehat{NAE}=\widehat{MDE}\)
Do đó: ΔNEA=ΔMED
=>AN=MD
CN+NA=CA
CM+MD=CD
mà CA=CD và AN=MD
nên CN=CM
Xét ΔCAD có CN/NA=CM/MD
nên NM//AD
=>NM\(\perp\)BC
e: Xét tứ giác AIDK có
AI//DK
AI=DK
Do đó: AIDK là hình bình hành
=>AD cắt IK tại trung điểm của mỗi đường
mà H là trung điểm của AD
nên H là trung điểm của KI
=>K,H,I thẳng hàng
a) Xét tam giác AHB và tam giác AHE có
BH=HE
AH chung
góc AHE= góc AHB= 90 độ ( AH vuông góc với BC)
=> tam giác AHB= tam giác AHE (c.g.c)
=>HE=HB
b) Xét tam giác AHB và tam giác DHE có
góc DHE = góc AHB ( đối đỉnh)
HE=HB (cmt)
AH=HD
=> tam giác AHB=tam giác DHE (c.g.c)
=> DE= AB ( 2 cạnh tương ứng)
=> tam giác DHE= tam giác AHE =tam giác AHB
=> AE=DE(2 cạnh tương ứng)
c) Xét tam giác AHC và tam giác DHC có
HC chung
góc AHE=góc DHE=90 độ
AH=HD
=> tam giác AHC= tam giác DHC( cạnh huyền-góc nhọn)
=>AC=DC (2 cạnh tương ứng)
Xét tam giác ACE và tam giác DCE có
AE= DE (cmt)
AC= DC(cmt)
CE chung
=> tam giác ACE= tam giác DCE(c.c.c)
=> góc EAC= góc EDC (2 góc tương ứng)
d)Ta có: C,E,B thẳng hàng
=> góc CEA+ góc AEB= 180 độ
Mà góc CEN và góc AEB là 2 góc đối đỉnh
=>góc AEC+ góc CEN= 180 độ
=> A,E,N thẳng hàng
a: Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểmcủa BC
hay HB=HC
b: Xét ΔADH vuông tạiD và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
Suy ra HD=HE
hay ΔHDE cân tại H
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>HB=HC
b: Ta có: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
\(\widehat{DAH}=\widehat{EAH}\)
Do đó: ΔADH=ΔAEH
=>AD=AE và HD=HE
Xét ΔABC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
c: Ta có: HD=HF
mà H nằm giữa D và F
nên H là trung điểm của DF
Xét ΔEDF có
EH là đường trung tuyến
\(EH=\dfrac{DF}{2}\)
Do đó: ΔEDF vuông tại E