K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2020

Chỉnh lại đề bài : Cho tam giác ABC cân tại A, hai đường trung tuyến BD, CE cắt nhau tại G. Trên tia đối của tia DB lấy điểm F sao cho DF = \(\frac{1}{3}\)BD, trên tia đối của tia EC lấy điểm H sao cho EH = \(\frac{1}{3}\)CE. Chứng minh tứ giác BCFH là hình chữ nhật.

Trả lời : 

*Tự phác hình nhé bạn

Ta có \(\Delta ABC\)cân => AB = AC

Có AB = AC, D là trung điểm AC (gt) => AD = DC, E là trung điểm AB => AE = EB

Mà AD + DC = AC, AE + EB = AB

=> AD = AE

Xét \(\Delta ABD\)và \(\Delta ACE\)có : AB = AC (gt), \(\widehat{A}\)chung, AD = AE (cmt)

=> \(\Delta ABD\)\(\Delta ACE\)(c.g.c)

Mặt khác, G là trọng tâm => \(GD=\frac{1}{3}BD,GE=\frac{1}{3}CE\)

=> GF = GB = GC = GH

Tứ giác BCFH có 2 đường chéo BF và CH cắt nhau tại trung điểm mỗi đường => BCFH là hình bình hành

Lại HG + GC = BG + GF hay HC = BF => Hình bình hành BCFH có 2 đường chéo bằng nhau

=> BCFH là hình chữ nhật.

*Trình bày hơi lủng củng, mong bạn bỏ qua.

a: ta có: GN và GQ là hai tia đối nhau

=>G nằm giữa N và Q

mà GN=GQ

nên G là trung điểm của NQ

Ta có: GP và GM là hai tia đối nhau

=>G nằm giữa P và M

mà GP=GM

nên G là trung điểm của PM

Xét tứ giác MNPQ có

G là trung điểm chung của MP và NQ

=>MNPQ là hình bình hành

b: Ta có: ΔABC cân tại A

=>AB=AC(1)

Ta có: M là trung điểm của AC

=>\(AM=CM=\dfrac{AC}{2}\left(2\right)\)

Ta có: N là trung điểm của AB

=>\(AN=BN=\dfrac{AB}{2}\left(3\right)\)

Từ (1),(2),(3) suy ra AM=CM=AN=BN

Xét ΔAMB và ΔANC có

AM=AN

\(\widehat{BAM}\) chung

AB=AC

Do đó: ΔAMB=ΔANC

=>BM=CN

Xét ΔABC có

BM,CN là các đường trung tuyến

BM cắt CN tại G

Do đó: G là trọng tâm của ΔABC

=>\(MG=\dfrac{1}{3}BM;NG=\dfrac{1}{3}CN\)

mà BM=CN

nên MG=NG

G là trung điểm của QN

nên QN=2NG

G là trung điểm của MP

nên MP=2MQ

Ta có: MG=NG

mà QN=2NG và MP=2MQ

nên QN=MP

Hình bình hành MNPQ có NQ=MP

nên MNPQ là hình chữ nhật

a: Sửa đề: ΔABC cân tại A

Xét ΔABM và ΔACN có

AB=AC

góc BAM chung

AM=AN

=>ΔABM=ΔACN

=>BM=CN

Xét ΔACB có

BM,Cn là trung tuyến

BM cắt CN tại G

=>G là trọng tâm

=>BG=2/3BM và CG=2/3CN

mà BM=CN

nên BG=CG

b: BG=2/3BM

=>BG=2GM

=>BG=GD

=>G là trung điểm của BD và BD=2BG

CG=2/3CN

=>CG=2GN

=>CG=GE

=>G là trung điểm của CE và CE=2CG

CE=2CG

BD=2BG

mà CG=BG

nên CE=BD

Xét tứ giác BCDE có

G là trung điểm chung của BD và CE

CE=BD

=>BCDE là hình chữ nhật

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Lời giải:

Xét tam giác $NBC$ và $MCB$ có:
$\widehat{NBC}=\widehat{MCB}$ (do tam giác $ABC$ cân tại $A$)

$BC$ chung

$NB = \frac{AB}{2}=\frac{AC}{2}=MC$

$\Rightarrow \triangle NBC=\triangle MCB$ (c.g.c)

$\Rightarrow NC=MB(1)$

Tam giác $ADC$ có $B, M$ lần lượt là trung điểm $AD, AC$ nên $MB$ là đường trung bình ứng với cạnh $DC$

$\Rightarrow MB=\frac{1}{2}CD(2)$

Từ $(1); (2)\Rightarrow NC=\frac{1}{2}CD$

$\Rightarrow CD=2NC$

AH
Akai Haruma
Giáo viên
5 tháng 10 2021

Hình vẽ:

- Trên tia đối của MC lấy điểm E sao cho ME = MC.
- Tứ giác AEBC có hai đường chéo AB và EC cắt nhau tại trung điểm M mỗi đường => AEBC là hình bình hành => EB // AC; EB = AC.
- Có AB = AC (do tam giác ABC cân tại A); AB = BD (theo giả thiết); lại có EB = AC (chứng minh trên) => EB = BD. 
- Có góc ABC + góc DBC = 180 độ (Hai góc kề bù). Mà góc ABC = góc ACB (do tam giác ABC cân tại A) => góc DBC + góc ACB = 180 độ. (1)
- Có BE // AC (chứng minh trên) => góc EBC + góc ACB = 180 độ (Hai góc trong cùng phía). (2)
Từ (1) và (2) => góc DBC = góc EBC ( = 180 độ - góc ACB).
- Xét tam giác CBE và tam giác CBD có:
CB là cạnh chung
góc EBC = góc DBC (chứng minh trên)
EB = BD (chứng minh trên)
=> tam giác CBE = tam giác CDB (c.g.c) => CE = CD (Hai cạnh tương ứng). Mà CE = 2CM (cách vẽ) => CD = 2CM.
Vậy CE = 2CM.