Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ta có: GN và GQ là hai tia đối nhau
=>G nằm giữa N và Q
mà GN=GQ
nên G là trung điểm của NQ
Ta có: GP và GM là hai tia đối nhau
=>G nằm giữa P và M
mà GP=GM
nên G là trung điểm của PM
Xét tứ giác MNPQ có
G là trung điểm chung của MP và NQ
=>MNPQ là hình bình hành
b: Ta có: ΔABC cân tại A
=>AB=AC(1)
Ta có: M là trung điểm của AC
=>\(AM=CM=\dfrac{AC}{2}\left(2\right)\)
Ta có: N là trung điểm của AB
=>\(AN=BN=\dfrac{AB}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra AM=CM=AN=BN
Xét ΔAMB và ΔANC có
AM=AN
\(\widehat{BAM}\) chung
AB=AC
Do đó: ΔAMB=ΔANC
=>BM=CN
Xét ΔABC có
BM,CN là các đường trung tuyến
BM cắt CN tại G
Do đó: G là trọng tâm của ΔABC
=>\(MG=\dfrac{1}{3}BM;NG=\dfrac{1}{3}CN\)
mà BM=CN
nên MG=NG
G là trung điểm của QN
nên QN=2NG
G là trung điểm của MP
nên MP=2MQ
Ta có: MG=NG
mà QN=2NG và MP=2MQ
nên QN=MP
Hình bình hành MNPQ có NQ=MP
nên MNPQ là hình chữ nhật
a: Sửa đề: ΔABC cân tại A
Xét ΔABM và ΔACN có
AB=AC
góc BAM chung
AM=AN
=>ΔABM=ΔACN
=>BM=CN
Xét ΔACB có
BM,Cn là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
mà BM=CN
nên BG=CG
b: BG=2/3BM
=>BG=2GM
=>BG=GD
=>G là trung điểm của BD và BD=2BG
CG=2/3CN
=>CG=2GN
=>CG=GE
=>G là trung điểm của CE và CE=2CG
CE=2CG
BD=2BG
mà CG=BG
nên CE=BD
Xét tứ giác BCDE có
G là trung điểm chung của BD và CE
CE=BD
=>BCDE là hình chữ nhật
Lời giải:
Xét tam giác $NBC$ và $MCB$ có:
$\widehat{NBC}=\widehat{MCB}$ (do tam giác $ABC$ cân tại $A$)
$BC$ chung
$NB = \frac{AB}{2}=\frac{AC}{2}=MC$
$\Rightarrow \triangle NBC=\triangle MCB$ (c.g.c)
$\Rightarrow NC=MB(1)$
Tam giác $ADC$ có $B, M$ lần lượt là trung điểm $AD, AC$ nên $MB$ là đường trung bình ứng với cạnh $DC$
$\Rightarrow MB=\frac{1}{2}CD(2)$
Từ $(1); (2)\Rightarrow NC=\frac{1}{2}CD$
$\Rightarrow CD=2NC$
- Trên tia đối của MC lấy điểm E sao cho ME = MC.
- Tứ giác AEBC có hai đường chéo AB và EC cắt nhau tại trung điểm M mỗi đường => AEBC là hình bình hành => EB // AC; EB = AC.
- Có AB = AC (do tam giác ABC cân tại A); AB = BD (theo giả thiết); lại có EB = AC (chứng minh trên) => EB = BD.
- Có góc ABC + góc DBC = 180 độ (Hai góc kề bù). Mà góc ABC = góc ACB (do tam giác ABC cân tại A) => góc DBC + góc ACB = 180 độ. (1)
- Có BE // AC (chứng minh trên) => góc EBC + góc ACB = 180 độ (Hai góc trong cùng phía). (2)
Từ (1) và (2) => góc DBC = góc EBC ( = 180 độ - góc ACB).
- Xét tam giác CBE và tam giác CBD có:
CB là cạnh chung
góc EBC = góc DBC (chứng minh trên)
EB = BD (chứng minh trên)
=> tam giác CBE = tam giác CDB (c.g.c) => CE = CD (Hai cạnh tương ứng). Mà CE = 2CM (cách vẽ) => CD = 2CM.
Vậy CE = 2CM.
Chỉnh lại đề bài : Cho tam giác ABC cân tại A, hai đường trung tuyến BD, CE cắt nhau tại G. Trên tia đối của tia DB lấy điểm F sao cho DF = \(\frac{1}{3}\)BD, trên tia đối của tia EC lấy điểm H sao cho EH = \(\frac{1}{3}\)CE. Chứng minh tứ giác BCFH là hình chữ nhật.
Trả lời :
*Tự phác hình nhé bạn
Ta có \(\Delta ABC\)cân => AB = AC
Có AB = AC, D là trung điểm AC (gt) => AD = DC, E là trung điểm AB => AE = EB
Mà AD + DC = AC, AE + EB = AB
=> AD = AE
Xét \(\Delta ABD\)và \(\Delta ACE\)có : AB = AC (gt), \(\widehat{A}\)chung, AD = AE (cmt)
=> \(\Delta ABD\)= \(\Delta ACE\)(c.g.c)
Mặt khác, G là trọng tâm => \(GD=\frac{1}{3}BD,GE=\frac{1}{3}CE\)
=> GF = GB = GC = GH
Tứ giác BCFH có 2 đường chéo BF và CH cắt nhau tại trung điểm mỗi đường => BCFH là hình bình hành
Lại HG + GC = BG + GF hay HC = BF => Hình bình hành BCFH có 2 đường chéo bằng nhau
=> BCFH là hình chữ nhật.
*Trình bày hơi lủng củng, mong bạn bỏ qua.