K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2018

A B C M O I x

Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ ^CAx=^OAB. Trên Ax lấy điểm I sao cho AO=AI

Nối I với O và C.

Xét \(\Delta\)AMB và \(\Delta\)AMC:

AB=AC

AM chung            => ^MAB < ^MAC hay ^OAB < ^OAC

MB<MC

Mà ^OAB=^IAC => ^IAC < ^OAC

Xét \(\Delta\)AIC và \(\Delta\)AOC:

Cạnh AC chung

^IAC < ^OAC               => IC < OC

AI=AO

Xét \(\Delta\)OCI có: IC < OC => ^OIC > ^IOC (1)

Ta có: Tam giác OAI: AO=AI => \(\Delta\)OAI cân tại A => ^AIO=^AOI  (2)

Từ (1) và (2) => ^OIC+^AIO > ^IOC+^AOI => ^AIC > ^AOC (3)

Sau đó c/m \(\Delta\)AOB=\(\Delta\)AIC (c.g,c) => ^AIC=^AOB (4)

Từ (3) và (4) => ^AOB > ^AOC (đpcm).

24 tháng 2 2020

cuhevhuvhuvwvvfrbuvhfevhvhwreuv(hhhuvfuhevhhfuevhheuwevhehuhfuhhuueuhhfehvfhfhuwehhuuhvweihhhfehrihffreihfhreufhrefhuhefwfhheffuhewfuhibfewihubfefevubfềvuheb&bvefhbuveufded

5 tháng 5 2021

Cho tam giác ABC cân tại A. Gọi M là một điểm nằm trên cạnh BC sao cho MB<MC. Lấy điểm O trên đoạn thẳng AM. Chứng minh rằng góc AOB > góc AOC.

Cậu tham khảo ở đây ạ:

https://olm.vn/hoi-dap/detail/100073350231.html

hok tốt!!

^^

14 tháng 9 2018

Bạn tự vẽ hình nha!

Ta có: BM<MC => góc BOM < góc MOC

Ta lại có: góc BOM + góc BOA = góc MOC + góc COA

mà góc BOM < góc MOC => góc BOA > góc COA

18 tháng 9 2023

a)      Xét tam giác ABC có:

\(\begin{array}{l}\widehat A + \widehat B + \widehat C = {180^o}\\ =  > {90^o} + {60^o} + \widehat C = {180^o}\\ =  > \widehat C = {30^o}\end{array}\)

Xét tam giác CAM có \(\widehat A = \widehat C = {30^o}\)

=>Tam giác CAM cân tại M.

b) Xét tam giác ABM có:

\(\begin{array}{l}\widehat C + \widehat {CMA} + \widehat {CAM} = {180^o}\\ =  > {30^o} + \widehat {CMA} + {30^o} = {180^o}\\ =  > \widehat {CMA} = {120^o}\\ =  > \widehat {BMA} = {180^o} - \widehat {CMA} = {180^o} - {120^o} = {60^o}\end{array}\)

Xét tam giác ABM có:

\(\begin{array}{l}\widehat B + \widehat {BMA} + \widehat {BAM} = {180^o}\\ =  > {60^o} + {60^o} + \widehat {BAM} = {180^o}\\ =  > \widehat {BAM} = {60^o}\end{array}\)

Do \(\widehat {BAM} = \widehat {BMA} = \widehat {ABM} = {60^o}\) nên tam giác ABM đều.

c) Vì \(\Delta ABM\) đều nên \(AB = BM = AM\)

Mà \(\Delta CAM\) cân tại M nên MA = MC

Do đó, MB = MC. Mà M nằm giữa B và C

=> M là trung điểm của BC.