Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC cân tại A. Gọi M là một điểm nằm trên cạnh BC sao cho MB<MC. Lấy điểm O trên đoạn thẳng AM. Chứng minh rằng góc AOB > góc AOC.
Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ ^CAx=^OAB. Trên Ax lấy điểm I sao cho AO=AI
Nối I với O và C.
Xét \(\Delta\)AMB và \(\Delta\)AMC:
AB=AC
AM chung => ^MAB < ^MAC hay ^OAB < ^OAC
MB<MC
Mà ^OAB=^IAC => ^IAC < ^OAC
Xét \(\Delta\)AIC và \(\Delta\)AOC:
Cạnh AC chung
^IAC < ^OAC => IC < OC
AI=AO
Xét \(\Delta\)OCI có: IC < OC => ^OIC > ^IOC (1)
Ta có: Tam giác OAI: AO=AI => \(\Delta\)OAI cân tại A => ^AIO=^AOI (2)
Từ (1) và (2) => ^OIC+^AIO > ^IOC+^AOI => ^AIC > ^AOC (3)
Sau đó c/m \(\Delta\)AOB=\(\Delta\)AIC (c.g,c) => ^AIC=^AOB (4)
Từ (3) và (4) => ^AOB > ^AOC (đpcm).
Bạn tự vẽ hình nha!
Ta có: BM<MC => góc BOM < góc MOC
Ta lại có: góc BOM + góc BOA = góc MOC + góc COA
mà góc BOM < góc MOC => góc BOA > góc COA
a: Xét ΔABM và ΔACM có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔABM=ΔACM
=>MB=MC
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AB//CD
Cậu tham khảo ở đây ạ:
https://olm.vn/hoi-dap/detail/100073350231.html
hok tốt!!
^^