Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vẽ tia AG là tia đối của tia AC
Ta có: \(\widehat{FAB}=\widehat{ABC}\)(hai góc so le trong, AF//BC)
\(\widehat{GAF}=\widehat{ACB}\)(hai góc đồng vị, AF//BC)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{BAF}=\widehat{GAF}\)
hay Ax là tia phân giác của góc ngoài tại đỉnh A(đpcm)
TH1: AE là tia pgiac góc B'AC (AB' là tia đối của tia AB)
Xét B'AC là góc ngoài tgiac ABC tại đỉnh A => góc B'AC = góc B + góc C
Mà tgiac ABC cân tại A => góc B = góc C
=> Góc C = 1/2 góc B'AC
Lại có AE là tia pgiac góc B'AC => góc EAC = 1/2 góc B'AC
=> Góc C = góc EAC
Mà hai góc này so le trong => AE song song BC.
cmtt với trường hợp AE là tia pgiac góc C'AB (AC' là tia đối của tia AC)
Vậy ta có đpcm.
Cho tam giác ABC có B=C=40 độ. Gọi Ax là tia phân giác của góc ngoài ở đỉnh A. Hảy chứng minh Ax//BC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM