Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì tam giác ABC cân tại A => góc B = C = 750
Có: góc B + C + A = 1800
=> 75 + 75 + A = 1800
=> góc A = 300
Trong tam giác vuông AHC có góc A = 300
=> Tam giác AHC là nửa tam giác đều
=> CH = AB : 2
ta có:
A+B+C=180
A+75+75=180
=>A=30
mả CH vuông góc AB; C=30
=>CH=1/2 AB
Vay...
=>
AI KẾT BN KO!
TIỆN THỂ TK MÌNH LUÔN NHA!
KONOSUBA!!!
AI TK MÌNH MÌNH TK LẠI 3 LẦN.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
ACHB
Ta có : \(\widehat{B}=\widehat{ACB}\) ( \(\Delta\) cân tại A )
==> \(\widehat{ACB}=75\) độ
Tam giác HCB vuông tại H có: \(\widehat{B}+\widehat{HCB}=90\) độ
75 + \(\widehat{HCB}\) = 90 độ
\(\widehat{HCB}\) = 15 độ
Mà \(\widehat{ACB}=\widehat{HCB}+\widehat{ECD}\)
75 = 15 + \(\widehat{ECD}\)
==> \(\widehat{ECD}\) = 60độ
Tam giác AHC có: \(\widehat{H}=90\) độ (gt)
\(\widehat{ECD=}60\) độ (cmt)
==> Tam giác AHC là nửa tam giác đều.
==> 2CH = AC
Mà AC = AB ( \(\Delta\) ABC cân tại A )
==> 2CH = AB hay \(CH=\dfrac{AB}{2}\) (đpcm)
Nếu còn gì thắc mắc thì vào phần bình luận nhé!
CHÚC BẠN HỌC TỐT ***
A B C D H A' x x/2
Kẻ đường cao AH ; Vì \(\Delta\)ABC cân
=> H là trung điểm BC
Xét \(\Delta\)ABC cân tại A có ^A = 120\(^o\)
=> ^ABH = ^ACH = 30\(^o\)
=> ^BAH = 60 \(^o\)
Lấy A' đối xứng với A qua H; BH vuông góc AA'; H là trung điểm AA'
=> \(\Delta\)ABA' cân tại B mà ^BAA' = ^BAH = 60\(^o\)
=> \(\Delta\)ABA' đều .
Đặt: AB = x => AA' = x => AH = x/2
+) \(\Delta\)ABH vuông tại H => BH\(^2\)= AB\(^2\)- AH\(^2\)= \(x^2-\frac{x^2}{4}=\frac{3x^2}{4}\)
=> \(BH=\frac{\sqrt{3}x}{2}\)
=> \(BC=2BH=\sqrt{3}x=\sqrt{3}AB\)
( Như vậy chúng ta có nhận xét: Cho \(\Delta\)ABC cân tại A; ^A = 120\(^o\)=> \(BC=\sqrt{3}AB\))
=> \(AC=AB=\frac{BC}{\sqrt{3}}=\frac{6}{\sqrt{3}}\)
+) Xét \(\Delta\)ABD vuông tại A có: ^ABD = ^ABH = 30 \(^o\)=> ^ADB = 60\(^o\)
=> ^ADC = 180\(^o\)- ^ADB = 180\(^o\)- 60 \(^o\)= 120\(^o\)
Mà ^BAC = 120\(^o\); ^BAD = 90\(^o\)
=> ^DAC = 120\(^o\)- 90 \(^o\)= 30\(^o\)
+) Xét \(\Delta\)DAC có: ^DAC = 30\(^o\); ^ADC = 120\(^o\) => ^DCA = 30\(^o\)
=> \(\Delta\)DAC cân tại D và có: ^ADC = 120\(^o\). Theo nhận xét in đậm ở trên: \(AC=\sqrt{3}.DC\)
=> \(DC=\frac{AC}{\sqrt{3}}=\frac{\frac{6}{\sqrt{3}}}{\sqrt{3}}=\frac{6}{3}=2\)
=> \(BD=BC-DC=6-2=4cm\)
(Bạn tự vẽ hình giùm)
a/ \(\Delta HAB\)vuông và \(\Delta HCB\)vuông có: AB = CB (\(\Delta ABC\)cân tại A)
Cạnh HB chung
=> \(\Delta HAB\)vuông = \(\Delta HCB\)vuông (cạnh huyền - cạnh góc vuông) => HA = HC (hai cạnh tương ứng)
b/ \(\Delta AHD\)vuông và \(\Delta CHE\)vuông có: HA = HC (cm câu a)
\(\widehat{A}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
=> \(\Delta AHD\)vuông = \(\Delta CHE\)vuông (cạnh huyền - góc nhọn) => HD = HE (hai cạnh tương ứng)
c/ Ta có \(\Delta AHD\)= \(\Delta CHE\)(cm câu b) => AD = CE (hai cạnh tương ứng) (1)
và AB = AC (\(\Delta ABC\)cân tại A) (2)
Lấy (2) trừ (1) => AB - AD = AC - CE
=> BD = BE => \(\Delta BDE\)cân tại B
Sử dụng nửa tam giá đều nha
Tam giác cân ABC có:
\(\widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{A}=180^o-75^o\cdot2=30^o\)
Mà tam giác vuông ACH có góc A bằng 30 độ (đpcm)
Suy ra: tam giác vuông ACH là nửa tam giác đều có cạnh là AC
Suy ra: \(CH=\frac{AC}{2}=\frac{AB}{2}\)( vì tam giác ABC cân tại A)