Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(7,\)
\(a,\left\{{}\begin{matrix}AB=AC\left(\Delta ABC.cân\right)\\\widehat{B_1}=\widehat{C_1}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AFC=\Delta AEB\left(g.c.g\right)\\ \Rightarrow AF=AE\Rightarrow\Delta AFE.cân.tại.A\)
\(b,\left\{{}\begin{matrix}\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\\BC.chung\\\widehat{B_2}=\widehat{C_2}\left(\dfrac{1}{2}\widehat{ABC}=\dfrac{1}{2}\widehat{ACB}\right)\end{matrix}\right.\Rightarrow\Delta BFC=\Delta CEB\left(g.c.g\right)\)
\(c,\widehat{F_1}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta AEF.cân\right);\widehat{ABC}=\dfrac{180^0-\widehat{BAC}}{2}\left(\Delta ABC.cân\right)\\ \Rightarrow\widehat{F_1}=\widehat{ABC}\)
Mà 2 góc này ở vị trí đồng vị nên \(EF//BC\Rightarrow BEFC\) là hình thang
Mà \(\widehat{ABC}=\widehat{ACB}\left(GT\right)\)
Vậy \(BEFC\) là hình thang cân
a) Xét ΔDEN vuông tại N và ΔDFM vuông tại M có
DE=DF(ΔDEF cân tại D)
\(\widehat{EDN}\) chung
Do đó: ΔDEN=ΔDFM(cạnh huyền-góc nhọn)
Suy ra: DN=DM(hai cạnh tương ứng)
Xét ΔDEF có
\(\dfrac{DM}{DE}=\dfrac{DN}{DF}\left(DM=DN;DE=DF\right)\)
nên MN//EF(Định lí Ta lét đảo)
Xét tứ giác EMNF có MN//EF(Cmt)
nên EMNF là hình thang
mà \(\widehat{MEF}=\widehat{NFE}\)(ΔDEF cân tại D)
nên EMNF là hình thang cân
b) Xét ΔDMH vuông tại M và ΔDNH vuông tại N có
DH chung
DM=DN(cmt)
Do đó: ΔDMH=ΔDNH(cạnh huyền-cạnh góc vuông)
c) Ta có: ΔDMH=ΔDNH(cmt)
nên HM=HN(hai cạnh tương ứng)
Ta có: DM=DN(cmt)
nên D nằm trên đường trung trực của MN(1)
Ta có: HM=HN(cmt)
nên H nằm trên đường trung trực của MN(2)
Từ (1) và (2) suy ra DH là đường trung trực của MN
hay DH\(\perp\)MN
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
(ko chắc ở câu c)
a) Xét \(\Delta\)ADC và \(\Delta\) AEB có:
^ADC = ^AEB = 90o
^A chung. (chỗ này ko chắc:v)
AB = AC (\(\Delta\) ABC cân tại A)
Do đó \(\Delta\)ADC = \(\Delta\)AEB (cạnh huyền - góc nhọn)
b) Cách 1: Chứng minh tam giác ADH = tam giác AEH như hồi lớp 7 đã học (cách này chắc ăn nhất)
Cách 2: (ko chắc lắm)
Theo đề bài H là giao điểm 2 đường cao từ đó \(AH\perp BC\). Mặt khác:
Trong tam giác cân, đường cao xuất phát từ đỉnh đồng thời là đường phân giác nên AH là đường phân giác ^A.
Hay ^BAH = ^CAH hay ^DAH = ^EAH (Vì D và E lần lượt thuộc AB và AC)
c) Từ câu a) có ngay AD = AE \(\rightarrow\Delta\)ADE cân tại A. Do đó ^ADE = \(\frac{180^o-\widehat{DAE}}{2}=\frac{180^o-\widehat{BAC}}{2}\)(1)
Mặt khác, do \(\Delta\)ABC cân tại A nên \(\widehat{ABC}=\frac{180^o-\widehat{BAC}}{2}\) (2)
Từ (1) và (2) ta có ^ADE = ^ABC. Mà 2 góc này ở vị trí đồng vị nên DE // BC (3)
Do \(\Delta\)ABC cân tại A nên ^B = ^C (4)
Từ (3) và (4) ta có BDEC là hình thang cân (đpcm)