K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

a: Ta có: ΔABC cân tại A

mà AQ là đường cao ứng với cạnh đáy BC

nên Q là trung điểm của BC

Xét tứ giác BHCK có 

Q là trung điểm của BC

Q là trung điểm của HK

Do đó: BHCK là hình bình hành

27 tháng 10 2020

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, Tiếng Việt và Ngữ Văn hoặc Tiếng Anh, và KHÔNG ĐƯA các câu hỏi linh tinh gây nhiễu diễn đàn. OLM có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

21 tháng 12 2016

ohomọi người giúp mình với mình ko hiểu bài trên cho lắm

 

22 tháng 2 2020

a) Tứ giác BHCkBHCk có 2 đường chéo BCBCHKHK cắt nhau tại trung điểm MM của mỗi đường

⇒BHCK⇒BHCK là hình bình hành.

b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC

HC⊥ABHC⊥AB

⇒BK⊥AB⇒BK⊥AB (đpcm)

c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BCHD⊥BC,D∈BCHD⊥BC,D∈BC

⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI

MM là trung điểm của HKHK

⇒DM⇒DM là đường trung bình ΔHIKΔHIK

⇒DM∥IK⇒DM∥IK

⇒BC∥IK⇒BC∥IK

⇒BCKI⇒BCKI là hình thang

ΔCHIΔCHICDCD vừa là đường cao vừa là đường trung tuyến

⇒ΔCHI⇒ΔCHI cân đỉnh CC

⇒CI=CH⇒CI=CH (*)

Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)

Từ (*) và (**) suy ra CI=BKCI=BK

Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK

Suy ra BCIKBCIK là hình thang cân.

Tứ giác HGKCHGKCGK∥HCGK∥HC (do BHCKBHCK là hình bình hành)

⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC

...

28 tháng 9 2020

a) ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác => MN // BC

Tứ giác MNCB có MN // BC nên là hình thang

b) Xét ∆EQN và ∆KQC có:

     ^ENQ = ^KCQ (BN//CK, so le trong)

     QN = QC (gt)

     ^EQN = ^KQC (đối đỉnh)

Do đó ∆EQN = ∆KQC (g.c.g)

=> EN = KC ( hai cạnh tương ứng)                  (1)

∆NBC có Q là trung điểm của NC và QE // BC nên E là trung điểm của BN => EN = BE              (2)

Từ (1) và (2) suy ra KC = BE

Tứ giác EKCB có KC = BE và KC // BE nên là hình bình hành => EK = BC (đpcm)

c) EF = EQ - FQ = 1/2BC - 1/2MN = 1/2BC - 1/4BC = 1/4BC (đpcm)

d) Gọi J là trung điểm của BC 

Ta có EJ là đường trung bình của ∆NBC nên EJ // NC mà FI⊥NC nên FI⊥EJ

Tương tự suy ra EI⊥FJ suy ra I là trực tâm của ∆EFJ => JI⊥EF

Mà dễ thấy EF // BC nên IJ⊥BC

∆BIC có IJ vừa là đường cao vừa là trung tuyến nên là tam giác cân (đpcm)

28 tháng 9 2020

a) Do M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác ABC.

=> MN //BC

Tứ giác MNCB có MNBC nên MNCB là hình thang.

b) Xét tứ giác EKCB có EK//BC, BE//CK

=> EKCB là hình bình hành

=> EK = BC (đpcm)

a) xét tam giác ABC có:

 P là trung điểm của AB (đường trung tuyến CP)

N là trung điểm của AC (đường trung tuyến BN)

=> PN là đường trung bình của tam giác ABC (đ/n đường trung bình)

=> PN // BC (t/c đường trung bình) 

=> PN //CF

xét tứ giác CPNF có:

NE //PC (gt) 

PN //CF (cmt)

=> CPNF là hình bình hành

b) vì NE //PC (gt) 

        BD //PC (gt)

=> NF // BD

xét tứ giác BDFN có: 

NF // BD (cmt)

BN // DF (gt)

=> BDFN là HBH (dấu hiệu nhận biết)

c) vì tứ giác CPNF là HBH (câu a)

=> NF //CP ; NF = CP (t/c HBH)     (1)

vì tứ giác BDFN là HBH (câu b)

=> NF // BD ; NF = BD (t/c HBH)    (2)

từ (1) và (2) => BD // PC ; BD = PC

=> tứ giác PCDB là HBH (dấu hiệu nhận biết)

Mà M là trung điểm của đường chéo BC

=> M là trung điểm của đường chéo PD

=> P,M,D thẳng hàng

xét tam giác ABC có: 

P là trung điểm của AB (đường trung tuyến CP)

M là trung điểm của BC (đường trung tuyến AM)

=> PM là đường trung bình của tam giác ABC (đ/n đường trung bình)

=> PM //AC (t/c đường trung bình)

=> PD // NC 

=> tứ giác PNCD là hình thang

d) vì AC // PM (cmt) => AN // MD

Vì PM là đường trung bình của tam giác ABC (cmt)

=> PM = 1/2 AC (t/c đường trung bình)

mà AN =1/2 AC (N là trung điểm của AC)

=> PM = AN

mà PM = MD ( M là trung điểm của PD) => AN = MD

vì PM // AC (cmt) => MD // AN 

xét tứ giác ANDM có: 

AN = MD (cmt)

AN //MD (cmt) 

=> tứ giác ANDM là HBH 

=> AM = DN (t/c HBH)