Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
a) Tứ giác BHCkBHCk có 2 đường chéo BCBC và HKHK cắt nhau tại trung điểm MM của mỗi đường
⇒BHCK⇒BHCK là hình bình hành.
b) BHCKBHCK là hình bình hành ⇒BK∥HC⇒BK∥HC
Mà HC⊥ABHC⊥AB
⇒BK⊥AB⇒BK⊥AB (đpcm)
c) Do II đối xứng với HH qua BC⇒IH⊥BCBC⇒IH⊥BC mà HD⊥BC,D∈BCHD⊥BC,D∈BC
⇒I⇒I đối xứng với HH qua D⇒DD⇒D là trung điểm của HIHI
Và MM là trung điểm của HKHK
⇒DM⇒DM là đường trung bình ΔHIKΔHIK
⇒DM∥IK⇒DM∥IK
⇒BC∥IK⇒BC∥IK
⇒BCKI⇒BCKI là hình thang
ΔCHIΔCHI có CDCD vừa là đường cao vừa là đường trung tuyến
⇒ΔCHI⇒ΔCHI cân đỉnh CC
⇒CI=CH⇒CI=CH (*)
Mà tứ giác BHCKBHCK là hình bình hành ⇒CH=BK⇒CH=BK (**)
Từ (*) và (**) suy ra CI=BKCI=BK
Tứ giác BCKIBCKI là hình bình hành có 2 đường chéo CI=BKCI=BK
Suy ra BCIKBCIK là hình thang cân.
Tứ giác HGKCHGKC có GK∥HCGK∥HC (do BHCKBHCK là hình bình hành)
⇒HGKC⇒HGKC là hình thang có đáy là GK∥HCGK∥HC
...
bn tự vẽ hình nha
a,Ta có E đối xứng vs c qua d
-> D là trung điểm EC
Xét tứ giác EBCA có
DB=DA=1/2 AB( D là trung điểm BA-gt)
DE=DC=1/2EC( D là trung điểm EC-cmt)
mà EC cắt BA tại D
-> EBCA là hình bình hành( tứ giác có hai đg chéo cắt nhau tại trung điểm mỗi đg)
-> EB=AC và EB song song AC
b, Ta có HA=AC( H đối C qua A-gt)
mà EB=AC(Cmt), EB song song AC(cmt)
-> HA = EB; HA song song EB
Xét tứ giác EBAH có
HA=EB( cmt)
HA song song EB(cmt)
-> EBHA là hình bình hành( 1 cặp đối song song và bằng nhau)
Ta lại có ,góc BAC +góc BAH= 180 độ( kề bù)
mà góc BAC=90 độ( tam giác ABC vuong tại A-gt)
-> góc BAH= 90 độ
Ta có EBAH là hình bình hành(cmt)
mà góc BAH=90 độ(cmt)
-> EBAH là hcn( Hình bình hành có 1 góc vuông)