Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BD và CE là đường cao cắt nhau tại H => H là trực tâm Tam giác ABC .
Vậy AI cùng là đường cao thứ 3.
Mà Tam giác ABC cân tại A (gt)
=> AI vừa là đường cao vừa là trung tuyến của Tam giác ABC .
=> IB = IC.
Xét tam giác HIB và tam giác HCI có:
IH : Cạnh chung
Góc HIC = góc HIB (=90 độ)
IB = IC (AI trung tuyến)
=> Tam giác HIB = Tam giác HCI (c.g.c)
=> HB = HC (2 cạnh tương ứng).
Vậy Tam giác HBC cân tại H .(1)
Mặt khác : BD vuông góc AC; đường thẳng d vuông góc AC.
=> BD // CF (Từ vuông góc đến song song)
=> Góc HBC = Góc ICF (So le)
Lại có góc HBC = góc HCI ( Theo (1) )
=> Góc HCB = góc FCB. (Cùng bằng góc HBC).
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>BD=CE
b: góc ABD=góc ACE
=>góc HBC=góc HCB
=>ΔHBC cân tại H
c: AB=AC
HB=HC
=>AH là trung trực của BC
Bạn tự vẽ hình ik nha
a. Xét tam giác ABD và tam giác ACE có:
góc D = góc E = 90* (gt)
AB = AC (gt)
góc A chung
=> tg ABD = tg ACE (c. huyền-g. nhọn)
b. Vì H là giao điểm của 2 dường cao BD và CE
Nên AH cũng là đường cao cùa tg ABC hay AH vuông góc BC
Do tg ABC là tam giác cân => AI là đường cao đồng thời cũng là dường trung tuyến => BI = CI => I là trung điểm của BC
c.Ta có: góc ACE = góc ABD (doc tg ABD = tg ACE)
và góc ABC = góc ACB
=> góc DBC = góc ECB
Ta có: BD vuông góc AC (gt)
CF vuông góc AC (gt)
=> CF song song BD (2 dường thẳng cùng vuông góc với 1 dường thẳng)
=> góc DBC = góc BCF ( so le trong)
Mà góc DBC = góc ECB
=> góc ECB = góc BCF
=> BC lá tia phân giác của góc ECF
Nguyễn Diệu Linh.
Cho tam giác ABC cân tại A (góc A < 90 độ). Kẻ BD vuông góc AC (D thuộc AC), CE vuông góc AB (E thuộc AB), BD và CE cắt nhau tại H. a) Chứng minh BD = CE. b) Chứng minh tam giác BHC cân. c) Chứng minh AH là đường trung trực của BC. d) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. So sánh góc ECB và góc DKC - Toán học Lớp 7 - Bài tập Toán học Lớp 7 - Giải bài tập Toán học Lớp 7 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
cho hình chữ nhật ABCD ,đường chéo BD.Từ A ve AH vuong goc BD(H thuocB) a)CM tam giac HAD dong dang tam giac CDB b)CM AH.BD=AD.AB c) cho BH=9cm,HD=16cm.Tinh dien h tam giac ABC.
Câu a ) - Chứng minh tam giác vuông ABD = tam giác vuông ACE ( cạnh huyền - góc nhọn ) => Tự chứng minh
Câu b ) - Vì tam giác vuông ABD = tam giác vuông ACE ( ở câu a )
=> Góc B1 = góc C1 ( 2 góc tương ứng )
- Vì tam giác ABC là tam giác cân => góc B = góc C
Ta có góc B1 + góc B2 = góc C1 + C2
=> Góc B2 = góc C2
- Vậy tam giác HBC là tam giác cân
Câu c ) d , chiu
Cho Tam giác ABC cân tại a ( góc a nhỏ hơn 90 độ) kẻ BD vuông góc AC ( d thuộc AC ) ,CE vuông góc AB (e thuộc AB ) BD và CE cắt nhau tại h
A) c/m BD=CE
B) c/m Tam giác BHC là Tam giác cân
C) c/m AH là đường trung trực của BC
D) trên tia BD lấy điểmK sao cho D là Trung điểm của BK. So sánh góc ECB và góc ĐKC
ABCHIEDNM
a) Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có
AB=AC(tam giác ABC cân tại A)
Góc A chung
=> Tam giác ABD=tam giác ACE(ch-gn)
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\)(tam giác ABC cân tại A)
Và \(\widehat{ABD}=\widehat{ACE}\) ( tam giác ABD=ACE)
\(\Leftrightarrow\widehat{ABC}-\widehat{ABD}=\widehat{ACB}-\widehat{ACE}\\ \Leftrightarrow\widehat{DBC}=\widehat{ECB}\)
Do đó tam giác BHC cân tại H