Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

A B C H D E 10cm 8cm
a)Xét \(\Delta BEC\)vuông và \(\Delta BDA\)vuông, ta có:
Góc B : chung (gt)
Góc BEC = Góc BDA (gt)
\(\Rightarrow\Delta BEC\infty\Delta BDA\left(g.g\right)\)
b) Xét \(\Delta DHC\)vuông và \(\Delta DCA\)vuông, ta có:
Góc D: chung (gt)
Cạnh DC: chung (gt)
\(\Rightarrow\Delta DHC\infty\Delta DCA\left(g.c\right)\)
\(\Rightarrow\frac{DH}{DC}=\frac{DC}{DA}\Rightarrow DC^2=DH.DA\)
c) Ta có: \(\Delta EAC\)vuông, áp dụng định lí Pytago:
\(EC=\sqrt{AC^2-AE^2}=\sqrt{100-64}=\sqrt{36}=6cm\)
Xét \(\Delta AHE\)vuông và \(\Delta CBE\)vuông, ta có:
Góc CEB = góc AEH (gt)
Góc CHD = góc AHE (2 góc đối đỉnh)
\(\Rightarrow\Delta AHE\infty\Delta CBE\left(g.g\right)\)
mà \(AE+EB=AB\Rightarrow EB=AB-AE=10-8=2cm\)
\(\Rightarrow\frac{HE}{BE}=\frac{AE}{CE}\Rightarrow EH=\frac{BE.AE}{CE}=\frac{2.8}{6}=\frac{8}{3}cm\)
ta có: \(CH+HE=CE\Rightarrow CH=CE-HC=6-\frac{8}{3}=\frac{10}{3}cm\)
ủa bạn cho mình hỏi góc chd = góc ahe thì có liên quan gì tới nhau đâu ?

A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).
Cho tam giác ABC cân tại A ( góc A < \(^o\) ) các đường cao AD, CE cắt nhau tại H.
a) CM: tam giác BEC = tam giác BDA
b)CM: tam giác DHC đồng dạng tam giác DCA. từ đó suy ra
#Hỏi cộng đồng OLM
#Toán lớp 8


câu d dùng tính chất đường phân giác trong tam giác là ra mà em!
EM là phân giác của tam giác ABE=>BM/AM=BE/AE
EN là phân giác của tam giác BEC =>CN/BN=EC/BE
=> BM/AM * CN/BN*AE/EC= BE/AE * EC/BE*AE/EC=1

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé
a, Xét tam giác BDA và tam giác KDC có: Góc BDA= Góc KDC(đối đỉnh)
Góc B= Góc K(90 độ)
=>Tam giác BDA đồng dạng với tam giác KDC(g.g)
=>\(\frac{DB}{DA}=\frac{DK}{DC}\)
b, Xét tam giác DBK và tam giác DAC có: Góc BDK= Góc DAC(đối đỉnh)
\(\frac{DB}{DA}=\frac{DK}{DC}\)
=>Tam giác DBK đồng dạng với tam giác DAC(c.g.c)
c, Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại B, ta có:
BC2=AC2-AB2
BC2=52-32
BC2=16
BC=4(cm)
Vì AD là phân giác
=>\(\frac{AB}{AC}=\frac{BD}{CD}\)
=>\(\frac{AB}{AC+AB}=\frac{BD}{CD+BD}\)
=>\(\frac{3}{5+3}=\frac{BD}{BC}\)
=>\(\frac{3}{8}=\frac{BD}{4}\)
=>BD=1,5(cm)
=>CD=BC-BD
CD=4-1,5
CD=2,5(cm)

Bài 1:
C A B E H D
Ta có: \(\widehat{ACB}+\widehat{ABC}=90^o\)
Xét: \(\Delta ABC\text{ và }\widehat{NBA}\)
\(\widehat{CAB}=\widehat{ANB}=90^o\)
\(\Rightarrow\Delta ABC~\Delta AHB\)
b) \(\frac{AB}{NB}=\frac{AC}{NA}\)
\(\Leftrightarrow\frac{AB}{AC}=\frac{NB}{NA}\left(1\right)\)
Chứng minh tương tự:
\(\Delta ABC~\Delta AHB\)
\(\frac{AN}{AB}-\frac{HC}{AC}\Rightarrow\frac{AB}{AC}=\frac{AN}{NC}\left(2\right)\)
\(\text{Từ (1) và (2) }\Rightarrow\frac{NB}{NA}=\frac{NA}{NC}\Rightarrow AB^2=BH.BC\left(đ\text{pcm}\right)\)
Xét tam giác vuông.
Áp dụng định lý Pi-ta-go, ta có:
\(DB^2=AB^2+AD^2=6^2+8^2=100\)
\(\Rightarrow DB=\sqrt{100}=10\left(cm\right)\)
Bài 2:
1 1 2 2 A B C D
a) Xét \(\Delta OAV\text{ và }\Delta OCD\)
Có: \(\widehat{AOB}=\widehat{COD}\left(đ^2\right)\)
\(\widehat{A_1}=\widehat{C_1}\left(\text{so le}\right)\)
\(\Rightarrow\Delta OAB~\Delta OCD\)
\(\Rightarrow\frac{OB}{OD}=\frac{OA}{OC}\Rightarrow\frac{DO}{DB}=\frac{CO}{CA}\)
b) Ta có: \(AC^2-BD^2=DC^2-AB^2\)
\(\Leftrightarrow AC^2-DC^2=BD^2-AB^2\)
\(\Delta\text{ vuông }ABC\left(\text{theo định lý Pi-ta-go}\right)\)
\(AC^2-DC^2=AD^2\left(1\right)\)
\(\Delta\text{ vuông }BDA\text{ có }\left(\text{theo định lý Pi-ta-go}\right)\)
\(BD^2-AB^2=AD^2\)
\(\text{Từ (1) và (2) }\Rightarrowđ\text{pcm}\)
a: Xét ΔBEC vuông tại E và ΔBDA vuông tại D có
góc B chung
Do đó: ΔBEC\(\sim\)ΔBDA
b: Xét ΔDHC vuông tại D và ΔDCA vuông tại D có
\(\widehat{DCH}=\widehat{DAC}\)
Do đó: ΔDHC\(\sim\)ΔDCA
Suy ra: DH/DC=DC/DA
hay \(DC^2=DH\cdot DA\)