K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2022

a. Xét \(2\Delta:\Delta BDC\) và \(\Delta CMD\) có:

\(\left\{{}\begin{matrix}\widehat{B}=\widehat{C}\left(gt\right)\\BC.chung\end{matrix}\right.\)

\(\Rightarrow\Delta BDC=\Delta CMD\) (cạnh huyền - góc nhọn)

b. Vì \(\Delta BDC=\Delta CMD\) (theo câu a)

\(\Rightarrow\widehat{DCB}=\widehat{MBC}\) (2 góc tương ứng)

\(\Rightarrow\Delta BCE\) cân tại E

10 tháng 2 2019

A B C M E K

Cm: Xét t/giác BAM và t/giác BEM

có góc A = góc MEB = 900 (gt)

     BM : chung

  góc ABM = góc MBE (gt)

=> t/giác BAM = t/giác BEM (ch -gn)

b) Ta có: t/giác BAM = t/giác BEM (cmt)

=> AB = BE (hai cạnh tương ứng)

=> t/giác BAE là t/giác cân tại B

c) Do t/giác BAM = t/giác BEM (cmt)

=> AM = EM (hai cạnh tương ứng)

Ta có: góc BAM + góc MAK = 1800

=> góc MAK = 1800 - 900 = 900 => góc MAK = góc MEC

Xét t/giác AMK và t/giác EMC

có góc MAK = góc MEC = 900 (cmt)

   AM = EM (cmt)

  góc AMK = góc EMC (đối đỉnh)

=> t/giác AMK = t/giác EMC (g.c.g)

=> AK = EC (hai cạnh tương ứng)

Mà AB + AK = BK

   BE + EC = BC

 và AB = BE (Cmt)

=> BK = BC => t/giác BKC là t/giác cân tại B

8 tháng 5 2017

A B C M N D E

a. Do ABC là tam giác cân tại A nên AB = AC hay AN = NB = CM = MA.

Xét tam giác AMB và ANC có:

AM = AN; AB = AC; góc A chung nên \(\Delta AMB=\Delta ANC\left(c-g-c\right)\)

b. Từ câu a, \(\widehat{ABM}=\widehat{ACN}\) (Hai góc tương ứng)

Mà tam giác ABC cân tại A nên \(\widehat{B}=\widehat{C}\)

Suy ra \(\widehat{DBC}=\widehat{DCB}\) hay tam giác BDC cân tại D.

c. Ta thấy \(\Delta ABE\) và \(\Delta ACE\) có : \(\widehat{B}=\widehat{C}=90^o;\) AB = AB; AE chung

nên \(\Delta ABE\)\(\Delta ACE\left(ch-cgv\right)\Rightarrow EB=EC\)

Ta thấy AB = AC, DB = DC, EB = EC nên A, D, E cùng thuộc đường trung trực của BC. Vậy chúng thẳng hàng.

Bài 1:Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).a, Chứng minh HB=HCb, Tính độ dài AH.c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.d, So sánh HD và HC.Bài 2:Cho tam giác ABC cân tại A có đường cao AH.a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.b, Cho BH= 8cm, AB= 10cm.Tính AH.c,, Gọi E là trung điểm...
Đọc tiếp

Bài 1:
Cho tam giác ABC cân có AB=AC=5cm, BC= 8cm.Kẻ AH vuông góc với BC ( H thuộc BC).
a, Chứng minh HB=HC
b, Tính độ dài AH.
c, Kẻ HD vuông góc với AB(D thuộc AB), kẻ HE vuông góc với AC ( E thuộc AC).Chứng minh tam giác HDE cân.
d, So sánh HD và HC.
Bài 2:
Cho tam giác ABC cân tại A có đường cao AH.
a, Chứng minh tam giác ABH = tam giác ACH và AH là tia phân giác của góc BAC.
b, Cho BH= 8cm, AB= 10cm.Tính AH.
c,, Gọi E là trung điểm của AC và G là giao điểm của BE và AH.Tính HG.
d, Vẽ Hx song song với AC, Hx cắt AB tại F. Chứng minh C, G, F thẳng hàng.
Bài 3
Cho tam giác ABC có CA= CB= 10cm, AB= 12cm.kẻ CI vuông góc với AB.Kẻ IH vuông góc với AC, IK vuông góc với BC.
a, Chứng minh IB= IC và tính độ dài CI
b, Chứng minh IH= IK.
c, HK// AC.
Bài 4:
Cho tam giác ABC cân tại A, vẽ AH vuông góc với BC tại H.Biết AB= 10cm, BH= 6cm.
a, Tính AH
b, tam giác ABH= tam giác ACH.
c, trên BA lấy D, CA lấy E sao cho BD= CE.Chứng minh tam giác HDE cân.
d, AH là trung trực của DE.
Bài 5:
Cho tam giác ABC cân tại AGọi D là trung điểm của BC.Từ D kẻ DE vuông góc với AB, DF vuông góc với AC. Chứng minh rằng:
a, tam giác ABD= tam giác ACD.
b, AD vuông góc với BC.
c, Cho AC= 10cm, BC= 12cm.Tính AD.
d, tam giác DEF cân.
Bài 6:
Cho tam giác ABC cân tại A có góc A < 900. kẻ BH vuông góc với AC ,CK vuông góc với AC.Gọi O là giao điểm của BH và CK.
a, Chứng minh tam giác ABH=Tam giác ACH.
b, Tam giác OBC cân.
c, Tam giác OBK = tam giác OCK.
d, trên nửa mặt phẳng bờ BC không chứa điểm A lấy I sao cho IB=IC.Chứng minh 3 điểm A, O, I thẳng hàng.
Bài 7
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, Tam giác ABD=tam giác ACE.
b, Tam giác BHC cân.
c, ED//BC
d, AH cắt BC tại K, trên HK lấy M sao cho K là trung điểm của HM.Chứng minh tam giác ACM vuông.
Bài 8
Cho tam giác ABC cân tại A. Kẻ BD vuông góc với AC, CE vuông góc với AB. BD và CE cắt nhau tại H.
a, BD= CE.
b, Tam giác BHC cân.
c, AH là trung trực của BC
d, Trên tia BD lấy K sao cho D là trung điểm của BK.So sánh góc ECB và góc DKC.
Bài9
Cho tam giác ABC cân tại A.vẽ trung tuyến AM .từ M kẻ ME vuông góc với AB tại E.kẻ MF vuông góc với AC tại F.
a, chứng minh tam giác BEM= tam giác CFM.
b, AM là trung trực vủa EF.
c, từ B kẻ đường thẳng vuông góc với AB tại B, từ C kẻ đường thẳng vuông góc với AC tại C, hai đường này cắt nhau tại D.Chứng minh A,M,D thẳng hàng.
Bài 10
Cho tam giác ABC cân tại AGọi M là trung điểm của AC.Trên tia đối MB lấy D sao cho DM= BM.
a, Chứng minh Tam giác BMC= tam giác DMA.Suy ra AD//BC.
b, tam giác ACD cân.
c. trên tia đối CA lấy E sao cho CA= CE.Chuwngsminh DC đi qua trung điểm I của BE.
Bài 11: Cho tam giác ABC cân tại A (AB = AC ), M là trung điểm của BC. Gọi D là điểm là điểm nằm giữa A và M. Chứng minh rằng:
a) AM là tia phân giác của góc A?
b) (ABD = (ACD.
c) (BCD là tam giác cân ?
Bài 12: Cho tam giác ABC vuông tại A , đường phân giác BD. Kẻ DE vuông góc với BC (E BC). Gọi F là giao điểm của BA và ED.

Giúp mk với các bạn đẹp trai xinh gái ai làm đúng mk tik cho 

Sắp hết Tết rùi giúp mk vs

9
26 tháng 4 2020

uôi dài v**

26 tháng 4 2020

ủa r viết ngần đó thì mất bn tg thek

10 tháng 7 2019

A B C D H E F M N

CM: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> \(\widehat{BAD}=\widehat{CAD}\) (2 góc t/ứng)

=> AD là tia p/giác của \(\widehat{BAC}\)

c) Xét t/giác MEB = t/giác NFC

có: \(\widehat{BEM}=\widehat{CFN}=90^0\) (gt)

  BM = CN (gt)

    \(\widehat{B}=\widehat{C}\) (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> \(\widehat{AEF}=\widehat{AFE}=\frac{180^0-\widehat{A}}{2}\) (1)

T/giác ABC cân tại A
=> \(\widehat{B}=\widehat{C}=\frac{180^0-\widehat{A}}{2}\) (2)

Từ (1) và (2) => \(\widehat{AEF}=\widehat{B}\)

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 \(\widehat{AEH}=\widehat{AFH}=90^0\) (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> \(\widehat{EAH}=\widehat{FAH}\) (2 góc t/ứng)

=> AH là tia p/giác của \(\widehat{A}\)

Mà AD cũng là tia p/giác của \(\widehat{A}\)

=> AH \(\equiv\) AD 

=> A, D, H thẳng hàng

5 tháng 5 2023

M: a) Xét t/giác ABM và t/giác ACN

có: AB = AC (gt)

 �^=�^B=C (vì t/giác ABC cân)

  BM = CN (gt)

=> t/giác ABM = t/giác ACN (c.g.c)

b) Ta có: BM + MD = BD

   CN + ND = CD

Mà BM = CN (gt); MD = ND (gt)

=> BD = CD

Xét t/giác ABD và t/giác ACD

có: AB = AC (gt)

  �^=�^B=C (vì t/giác ABC cân)

 BD = CD (cmt)

=> t/giác ABD = t/giác ACD (c.g.c)

=> ���^=���^BAD=CAD (2 góc t/ứng)

=> AD là tia p/giác của ���^BAC

c) Xét t/giác MEB = t/giác NFC

có: ���^=���^=900BEM=CFN=900 (gt)

  BM = CN (gt)

    �^=�^B=C (vì t/giác ABC cân)

=> t/giác MEB = t/giác NFC (ch - gn)

d) Ta có: AB = AE + EB

 AC = AF + FA

mà AB = AC (gt); EB = FC (vì t/giác MEB = t/giác NFC)

=> AE = AF 

=> t/giác AEF cân tại A

=> ���^=���^=1800−�^2AEF=AFE=21800A (1)

T/giác ABC cân tại A
=> �^=�^=1800−�^2B=C=21800A (2)

Từ (1) và (2) => ���^=�^AEF=B

Mà 2 góc này ở vị trí đồng vị

=> EF // BC

e) Xét t/giác AEH và t/giác AFH

có: AE = AF (cmt)

 ���^=���^=900AEH=AFH=900 (gt)

 AH : chung

=> t/giác AEH = t/giác AFH (ch - cgv)

=> ���^=���^EAH=FAH (2 góc t/ứng)

=> AH là tia p/giác của �^A

Mà AD cũng là tia p/giác của �^A

=> AH  AD 

=> A, D, H thẳng hàng

a. Xét hai tam giác vuông ABD và tam giác vuông MBD có

               góc BAD = góc BMD = 90độ

                cạnh BD chung

               góc ABD = góc MBD 

Do đó ; tam giác ABD= tam giác MBD [ cạnh huyền - góc nhọn ]

\(\Rightarrow\)AB = MB 

b.Xét tam giác ABC ,có góc A = 90độ , góc C=30 độ 

\(\Rightarrow\)góc B = 60 độ ,mà BD là tia phân giác của góc ABC

\(\Rightarrow\)\(\widehat{ABD}=\widehat{DBC}=30^O\)mà \(\widehat{C}=30^o\)\(\Rightarrow\widehat{DBC}=\widehat{DCB}=30^O\)

\(\Rightarrow\Delta BCD\)cân tại D

Ta có \(\Delta BDC\)cân tại D,\(DM\perp BC\)

\(\Rightarrow\)DM là đường trung tuyến của tam giác BDC

\(\Rightarrow\)BM=MC\(\Rightarrow\)M là trung điểm của BC

c,Xét tam giác ADE và tam giác MDC có 

 \(\widehat{ADE}=\widehat{MDC}\)\((\)đối đỉnh\()\)

\(\widehat{DAE}=\widehat{DMC}=90^O\)

AD=DM\((\)Từ tam giác BAD =tam giác BMD\()\)

Do đó \(\Delta ADE=\Delta MDC\)\((g.c.g)\)

\(\Rightarrow AE=MC\)\(\Rightarrow AE=BA=BM=MC\)

\(\Rightarrow BE=BC\)

\(Xét\Delta BEF\)và \(\Delta BCFcó\)

góc EBF = góc CBF

BF cạnh chung

BE=BC

Do đó tam giác BEF =tam giác BCF [c.g.c]

\(\Rightarrow\widehat{BFE}=\widehat{BFC}=90^O\)

\(\Rightarrow\widehat{EFC}=180^O\)\(\Rightarrow\)Ba điểm C,F,E thẳng hàng

Chúc bạn học tốt

13 tháng 3 2022

hơi sai sai ở phần cuối