Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BD=4cm
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra:BD=CE
c: Xét ΔABC có
BD là đường cao
CE là đường cao
BD cắt CE tại I
Do đó: I là trực tâm của ΔABC
Suy ra: AI\(\perp\)BC
=>AH vuông góc với BC tại H
mà ΔACB cân tại A
nên AH vuông góc với BC tại trung điểm của BC
a: Xét ΔABD vuông tại D vaf ΔACE vuông tại E có
AB=AC
góc BAD chung
=>ΔABD=ΔACE
=>AD=AE
b: Xét ΔABC có AD/AC=AE/AB
nên DE//BC
c: Xét ΔIBC có góc ICB=góc IBC
nên ΔIBC cân tại I
d: AB=AC
IB=IC
=>AI là trung trực của BC
=>AI vuông góc BC
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{A}\) chung
Do đó: ΔABD=ΔACE
b: Xét ΔBDC vuông tại D và ΔCEB vuông tại E có
BD=CE
BC chung
Do đó: ΔBDC=ΔCEB
Suy ra: \(\widehat{HBC}=\widehat{HCB}\)
hay ΔHBC cân tại H
c: Xét ΔABC có
AE/AB=AD/AC
Do đó: DE//BC
a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có
AB=AC
góc A chung
Do đó: ΔADB=ΔAEC
=>AD=AE
b: Xét ΔABC co AE/AB=AD/AC
nên ED//BC
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
d: AB=AC
IB=IC
Do đó: AI là trung trực của BC
=>AI vuông góc với BC
Ta có \(\Delta ABC\) cân ở A
=> AB = AC
và \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)
Lại có \(\hept{\begin{cases}\widehat{CBD}=\widehat{ABD}\\\widehat{BCE}=\widehat{ECA}\end{cases}}\left(gt\right)\)
=> \(\widehat{ABC}-\widehat{CBD}=\widehat{ACB}-\widehat{BCE}\)
=> \(\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta AEC\) và \(\Delta ADB\) có
\(\widehat{ABD}=\widehat{ACE}\) (cmt
AC= AB (cmt)
\(\widehat{A}\) chung
=> \(\Delta AEC\)= \(\Delta ADB\) (g-c-g)
=> AE = AD ( 2 cạnh tương ứng)
=> \(\Delta ADE\) cân tại A
=> \(\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(2\right)\)
Từ (1) và (2) => \(\widehat{ABC}=\widehat{AED}\)
Mà 2 góc này ở vị trí đồng vị => DE // BC
Câu b có sai đề ko v bạn bài cho CE vuông góc vs AB r mà
Học tốt