Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét \(\Delta BEC\)vuông và \(\Delta BDA\)vuông, ta có:
Góc B : chung (gt)
Góc BEC = Góc BDA (gt)
\(\Rightarrow\Delta BEC\infty\Delta BDA\left(g.g\right)\)
b) Xét \(\Delta DHC\)vuông và \(\Delta DCA\)vuông, ta có:
Góc D: chung (gt)
Cạnh DC: chung (gt)
\(\Rightarrow\Delta DHC\infty\Delta DCA\left(g.c\right)\)
\(\Rightarrow\frac{DH}{DC}=\frac{DC}{DA}\Rightarrow DC^2=DH.DA\)
c) Ta có: \(\Delta EAC\)vuông, áp dụng định lí Pytago:
\(EC=\sqrt{AC^2-AE^2}=\sqrt{100-64}=\sqrt{36}=6cm\)
Xét \(\Delta AHE\)vuông và \(\Delta CBE\)vuông, ta có:
Góc CEB = góc AEH (gt)
Góc CHD = góc AHE (2 góc đối đỉnh)
\(\Rightarrow\Delta AHE\infty\Delta CBE\left(g.g\right)\)
mà \(AE+EB=AB\Rightarrow EB=AB-AE=10-8=2cm\)
\(\Rightarrow\frac{HE}{BE}=\frac{AE}{CE}\Rightarrow EH=\frac{BE.AE}{CE}=\frac{2.8}{6}=\frac{8}{3}cm\)
ta có: \(CH+HE=CE\Rightarrow CH=CE-HC=6-\frac{8}{3}=\frac{10}{3}cm\)
ủa bạn cho mình hỏi góc chd = góc ahe thì có liên quan gì tới nhau đâu ?
a: Xét ΔBEC vuông tại E và ΔBDA vuông tại D có
góc B chung
Do đó: ΔBEC\(\sim\)ΔBDA
b: Xét ΔDHC vuông tại D và ΔDCA vuông tại D có
\(\widehat{DCH}=\widehat{DAC}\)
Do đó: ΔDHC\(\sim\)ΔDCA
Suy ra: DH/DC=DC/DA
hay \(DC^2=DH\cdot DA\)
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé
1b) Tam giác AMN vuông tại M có góc A = 60o
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 30o) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2 /MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 60o
=> tg AMI đều => AM = AI = 1/2AN
Từ (1) và (2) bn suy ra nhé
a)BC2 =AB2+AC2 ( định lí Pitago)
=> BC=10
Dựa vào t/c đường phân giác ta có
AB/AD=BC/DC=AB+BC/ AD+DC= 16/8=2
=> AD= 3; DC=5
=>AD/DC= 3/5
b)có GÓC A =GOC E= 90 ĐỘ
VÀ GÓC ABD =GÓC EBC (VÌ BD LA BD GÓC ABC)
=>TG ABD đồng dạng tam giác EBC(gg)
c) d) cũng khá dễ nên bạn tự làm nha (gợi ý kết hợp b,c để gải d)
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có
góc EAB chung
Do đó: ΔAEB\(\sim\)ΔAFC
Suy ra: AE/AF=AB/AC
hay \(AE\cdot AC=AB\cdot AF\)
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc EAF chung
Do đó: ΔAEF\(\sim\)ΔABC
Suy ra: \(\widehat{AEF}=\widehat{ABC}\)
1b) Tam giác AMN vuông tại M có góc A = 600 => góc N = 300
Tam giác vuông AMD và tam giác vuông NMA có góc A = góc N(cùng = 300) nên chúng đồng dạng
=> SAMD/SNMA = (AM/MN)2 = AM2/MN2 (1)
Gọi I là trung điểm của AN => MI là trung tuyến tg AMN vuông tại M => MI = IA = 1/2AN => tg AMI cân tại I mà góc A = 600
=> tg AMI đều => AM = AI = 1/2AN
Theo Pytago ta có AN2 = AM2 + MN2 => (2AM)2 - AM2 =MN2 => 3AM2 = MN2 => AM2/MN2 = 1/3 (2)
Từ (1) và (2) bn suy ra nhé