Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác ABEC có 2 đường chéo AE và BC cắt nhau tại trung điểm M của mỗi đường nên ABEC là hình bình hành
\(\Rightarrow\begin{cases}AB=CE\left(1\right)\\AB\backslash\backslash CE\end{cases}\)
a,xét ΔABM và ΔECM có:
\(\begin{cases}MA=ME\left(gt\right)\\MB=MC\left(gt\right)\\AB=CE\left(cmt\right)\end{cases}\)
→ΔABM=ΔECM(c.c.c)
b,Xét ΔABD có BH là đường cao đồng thời là đường trung tuyến
nên ΔABD cân tại B
→BC là phân giác của \(\widehat{ABD}\)
ΔABD cân tại B →AB=BD(2)
Từ (1),(2)→BD=CE
Đầu tiên để dựng điểm M: cậu lấy P trên BC sao cho BP+AB=AC(cái này dễ đúng ko), rồi lấy M là trung điểm của CP.
Dựng đường cao AH của tam giác, cậu có ngay AH=1/2 AC(tam giác ACH vuông tại H và C =90 độ)
nếu tớ gọi
độ dài cạnh BC là a thì
ta có AB=1/2a
AC = căn3/2a.
AH =căn3/4 a
BH = 1/2 AB = 1/4a (tam giác AHB vuông tại H có B = 60 độ)
ta có: CM = 1/2CP = 1/2(CB - BP) = 1/2(CB - (AC - AB)) = a.(3 - căn3)/4
ta lại có: MH = BC - CM - HB = a.căn3/4
vậy ta xét tam giác AMH có tan góc AMH = AH/MH = 1 vậy có góc AMH = 45 độ
xét tam giác ABM có góc BAM = 180 - ABM - AMB = 180 - 60 - 45 =75 độ
a)Xét tam giác ACD và tam giác ECD(đều là vuông)
ECD=DCA(Vì CD là p/giác)
CD là cạnh chung
\(\Rightarrow\)tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)
b)Vì tam giác ACD=tam giác ECD(cạnh huyền góc nhọn)
\(\Rightarrow\)AD=DE(cạnh cặp tương ứng)
\(\Rightarrow\)D cách đều hai mút của AE
\(\Rightarrow\)CD là đường trung trực của AE
Do đó CI\(\perp\)AE
\(\Rightarrow\)Tam giác CIE là tam giác vuông
c)Vì AD=DE(câu b)
Mà tam giác BDE là tam giác vuông(tại E)
\(\Rightarrow\)DE<BD(cạnh góc vuông nhỏ hơn cạnh huyền)
\(\Rightarrow\)AD<BD(đpcm)
d)Kéo dài BK cắt AC tại O
Vì BK\(\perp\)CD(gt)
\(\Rightarrow\)CK là đường cao thứ nhất của tam giác OBC(1)
Vì tam giác ABC vuông tại A
Nên BA\(\perp\)AC
\(\Rightarrow\)BA là đường cao thứ hai của tam giác OBC(2)
Theo đề bài ta có DE\(\perp\)BC
Nên DE là đường cao thứ ba của tam giác OBC(3)
Từ (1),(2) và (3) suy ra:
Ba đường cao giao nhau tại một điểm trùng với điểm D
\(\Rightarrow\) 3 đường thẳng AC;DE;BK đồng quy(đpcm)
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE
a: Xét ΔAIH và ΔMHI có
\(\widehat{AIH}=\widehat{MHI}\)
HI chung
\(\widehat{AHI}=\widehat{MIH}\)
Do đo: ΔAIH=ΔMHI
b: Xét tứ giác AIMH có
MH//AI
MI//AH
Do đó: AIMH là hình bình hành
Suy ra: AI=HM(1)
Xet ΔHMC có \(\widehat{HMC}=\widehat{C}\)
nên ΔHMC cân tại H
=>HM=HC(2)
Từ (1) và (2) suy ra AI=HC