K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 4 2019

bn ơi,cho tam giác ABC vuông cân tại j vậy?

14 tháng 4 2019

la no vua  vuong vua can do ban

a) Tự vẽ 

b) Vì CI là phân giác ACB 

=> ACI = BCI = \(\frac{60°}{2}\)= 30° 

Vì IE // BC (gt)

=> ICB = EIC = 30° ( so le trong) 

d) Vì DE//BC (gt)

=> AED = ACB = 60° ( đồng vị) 

Xét ∆AIE ta có : 

AIE + AEI + IAE = 180° 

=> IAK = 180° - 90° - 60° = 30° 

Ta có : 

AEI = KEC = 60° ( đối đỉnh) 

Xét ∆EKC ta có : 

EKC + KCE + KEC = 180° 

=> KCE = 180° - 90° - 60° = 30° 

=> EAI = KCE = 30° 

Mà 2 góc này ở vị trí so le trong 

=> AH//KC

e) Xét ∆AHC ta có : 

ACH + CAH + AHC = 180° 

=> CAH = 180°  - 90° - 60° = 30° 

31 tháng 7 2019

pham vu anh tuan oi ban co the ve hinh va viet gia thiet cho mik dc ko .lm on!!!

25 tháng 4 2016

a)ta co: dh=dk(tc tia phan giac cua mot goc)

         goc d1=d2(gt)

         da: canh chung

 => hk=dk => da la duong trung truc cua hk.

=> dhk la tam giac deu.

b) loang ngoang kho hieu luc khac giai

26 tháng 4 2016

A B C D K H I

a. Do  D thuộc đường phân giác của góc BAC nên DH = DK, hay ta, giác DHK cân.

Cũng do AD là phân giác của góc BAC nên \(\widehat{KAD}=\widehat{DAH}=60^0\)

Lại có: \(\widehat{KAD} + \widehat{ADK}=90^0, \widehat{KAD}=60^0 \Rightarrow \widehat{ADK}=30^0.\)

Tương tự như vậy, \(\widehat{ADH}=30^0\). Từ đó ta dễ thấy rằng \(\widehat{HDK}=60^0\).

Tam giác cân DHK có một góc bằng \(60^0\) nên DHK là tam giác đều.

b. Ta thấy góc IAC kề bù với góc BAC nên \(\widehat{IAC}=180^0-120^0=60^0\)

Lại có do AD song song CI nên \(\widehat{ACI}=\widehat{DAC}=60^0\) (So le trong)

Tam giác ACI có 2 góc bằng \(60^0\) nên góc còn lại cũng bằng \(60^0\) và đó là tam giác đều.

PS: Chú ý đến các giải thiết liên quan tới đối tượng cần chứng minh để tìm cách giải em nhé, chúc em học tốt ^^

a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có 

MB=MC

\(\widehat{MBE}=\widehat{MCF}\)

Do đó:ΔBEM=ΔCFM

b: Ta có: AE+EB=AB

AF+FC=AC

mà EB=FC

và AB=AC
nên AE=AF

mà ME=MF

nên AM là đường trung trực của EF

c: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến

nên AM là đường trung trực của BC(1)

Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung

AB=AC
Do đó: ΔABD=ΔACD

Suy ra: DB=DC

hay D nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra A,M,D thẳng hàng

a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABC}\), H∈BC)

Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)

b) Ta có: ΔABC vuông tại A(gt)

\(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)

\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0=30^0\)

Ta có: BE là tia phân giác của \(\widehat{ABC}\)(gt)

\(\Rightarrow\widehat{ABE}=\widehat{CBE}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0\)

Xét ΔEBC có \(\widehat{ECB}=\widehat{EBC}\left(=30^0\right)\)

nên ΔEBC cân tại E(định lí đảo của tam giác cân)

⇒EB=EC

Xét ΔEBH vuông tại H và ΔECH vuông tại H có

EB=EC(cmt)

EH chung

Do đó: ΔEBH=ΔECH(cạnh huyền-cạnh góc vuông)

⇒HB=HC(hai cạnh tương ứng)

c) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE(EA và EC là hai tia đối nhau)

nên \(\widehat{BEC}=\widehat{BAE}+\widehat{ABE}\)(định lí góc ngoài của tam giác)

\(\Rightarrow\widehat{BEC}=90^0+30^0=120^0\)

Ta có: ΔEBH=ΔECH(cmt)

\(\widehat{BEH}=\widehat{CEH}\)(hai góc tương ứng)

\(\widehat{BEH}+\widehat{CEH}=\widehat{BEC}\)(tia EH nằm giữa hai tia EB,EC)

nên \(\widehat{BEH}=\widehat{CEH}=\frac{\widehat{BEC}}{2}=\frac{120^0}{2}=60^0\)

\(\Leftrightarrow\widehat{KEH}=60^0\)

Ta có: HK//BE(gt)

\(\widehat{BEH}=\widehat{KHE}\)(hai góc so le trong)

\(\widehat{BEH}=60^0\)(cmt)

nên \(\widehat{KHE}=60^0\)

Xét ΔKHE có

\(\widehat{KEH}=60^0\)(cmt)

\(\widehat{KHE}=60^0\)(cmt)

Do đó: ΔKHE đều(dấu hiệu nhận biết tam giác đều)

d) Xét ΔAEI vuông tại A có EI là cạnh huyền(EI là cạnh đối diện với \(\widehat{EAI}=90^0\))

nên EI là cạnh lớn nhất trong ΔAEI(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)

hay EI>EA

mà EA=EH(ΔBAE=ΔBHE)

nên IE>EH(đpcm)