Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ΔABC cân tại A và AM là đường trung tuyến nên AM cũng là đường cao
Ta có: AM ⊥ BC
d ⊥ AM (gt)
Vì hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba thì song song nhau nên ta có: d // BC.
ΔABC cân tại A có AM là đường cao
nên M là trung điểm của BC
Xét ΔCAB có
M là trung điểm của BC
MD//AB
=>D là trung điểm của AC
a.Ta có: AB=AC ( gt )
=> Tam giác ABC cân tại A
Mà AM là đường trung tuyến => AM cũng là đường cao
=> AM vuông góc với BC
b. Ta có: BH = BC : 2 ( AM là đường trung tuyến )
=> BH = 32 : 2 = 16cm
Áp dụng định lý pitago vào tam giác vuông ABM, có:
\(AB^2=AM^2+BM^2\)
\(\Rightarrow AM=\sqrt{AB^2-BM^2}=\sqrt{34^2-16^2}=\sqrt{900}=30cm\)
c.Xét tam giác vuông BMF và tam giác vuông CME, có:
góc B = góc C ( ABC cân )
BM = CM ( gt )
Vậy tam giác vuông BMF = tam giác vuông CME ( cạnh huyền. góc nhọn)
=> BF = CE ( 2 cạnh tương ứng )
=> AF = AE ( AB = AC; BF = CE )
=> Tam giác AEF cân tại A
=> AM vuông với EF (1)
Mà AM cũng vuông với BC (2)
Từ (1) và (2) suy ra EF//BC
d. ta có: BM = CM ( gt ) (3)
Mà trong tam giác vuông MCE có ME là cạnh huyền
=> \(ME>MC\) (4)
Từ (3) và (4) suy ra \(ME>MB\)
∆ABC cân tại A, AM là đường trung tuyến nên AM cũng là đường cao.
AM⊥BC
d⊥AM(gt)
Suy ra: d // BC (hai đường thẳng phân biệt cùng vuông góc với đường thẳng thứ ba).