K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 6 2019

a ) Do AM là trung tuyến => BM = CM

Xét \(\Delta ABM\)và \(\Delta DCM\)có :

BM = CM ( cm trên )

\(\widehat{BMA}=\widehat{DMC}\)( hai góc đối đỉnh)

MA = MD ( gt )

nên \(\Delta ABM=\Delta DCM\)( c.g.c )

=> \(\widehat{ABM}=\widehat{MCD}\)( hai góc tương ứng )

mà hai góc này lại ở vị trí so le trong => AB//CD

14 tháng 6 2019

A B C D M K Q N I

a, vì AM là tpg của A nên BAM=CAM

xét tam giác AMB & AMC có: BAM=CAM(cmt); AB=AC( tam giác ABC cân tại A); góc B=C( tam giác ABC cân tại A)

=> tam giác AMB=AMC(g.c.g)

b,vì tam giác AMB=AMC nên  góc AMB=AMC

mà AMB+AMC=1800( 2 góc kề bù)=> AMB=AMC=900=> AM vuông góc với BC

vì tam giác AMB=AMC nên BM=CM(2 cạnh tương ứng)

=> BM=CM=BC:2=3 cm

theo định lí PTG, ta có:

AM2+BM2=AB2

hay AM2= AB2- BM2

<=>AM2=52-32=16

=> AM= 4 cm.

c, xét tam giác BHM và CHM: BM=CM(cmt); góc HMB=HMC(=900); HM là cạnh chung=> tam giác BHM=CHM(c.g.c)=>HB=HC(tương ứng)

xét tam giác HBC có HB=HC(cmt) do đó tam giác HBC cân tại H.