Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì H,O là trung điểm BC,AC nên OH là đtb tg ABC
Do đó OH//AB hay ABOH là hthang
b, Vì O là trung điểm AC và HK nên AHCK là hbh
Lại có tam giác ABC cân nên AH là trung tuyến đồng thời cũng là đường cao
Do đó \(\widehat{AHC}=90^0\)
Vậy AHCK là hcn
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
a) Xét tứ giác AHCK ta có:
Vì O trung điểm AC
K đối xứng vs H qua O => O trung điểm HK
Mà AC và HK cắt nhau tại trung điểm O
=> AHCK là hbh ( hai đg chéo cắt nhau tại trug điểm mỗi đg)
Lại có ^AHC=90o ( AH là đường cao)
=> AHCK là hcn (hbh có 1 góc vuông)
b) Xét tứ giác ABMC có:
M đối xứng với A qua H => AM là đường trung trực
=> AB=AC (1)
Mặt khác:M đối xứng vs A qua H=> H trung điểm AM
AH là đường cao của tam giác ABC cân tại A
=> AH là đường trung tuyến của tam giác ABC
=>H là trug điểm BC (HB=HC)
mà AM và BC cắt nhau tại trug điểm H
Nên ABCM là hbh (2 đg chéo cắt nhau tại trugđ mỗi đg) (2)
Từ (1) và (2) => ABMC là hình thoi ( hbh có 2 cạnh kề = nhau) (đpcm)
c) Xét tứ giác ABHK có:
Vì HB=HC (cmt)
mà AK=HC ( AKHC là hcn)
=> AK=BH
Lại có AK//BC (AKHC là hcn)
=>AK//BH
Nên AKBH là hbh ( 2 cạnh đối // và = nhau)
d) VÌ HB=HC=BC/2 (cm câu a)
=> HC=6/2=3 cm
Áp dụng công thức tính S và hcn AKHC ta có:
SAKHC=AH.HC
=> SAKHC=4.3=12 (cm2)
Vậy SAKHC=12 cm2
a:
Sửa đề: Chứng minh AHCD là hình chữ nhật
ΔABC cân tại A
mà AH là đường trung tuyến
nên AH\(\perp\)BC tại H
Xét tứ giác AHCD có
O là trung điểm chung của AC và HD
=>AHCD là hình bình hành
Hình bình hành AHCD có \(\widehat{AHC}=90^0\)
nên AHCD là hình chữ nhật
b: AHCD là hình bình hành
=>AD//HC và AD=HC
AD//HC
H\(\in\)BC
Do đó: AD//HB
AD=HC
HC=HB
Do đó: AD=HB
Xét tứ giác ABHD có
AD=HB
AD//HB
Do đó: ABHD là hình bình hành