Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) Xét ∆ABC vuông tại B có:
^BAC + ^C = 90°
Hay ^BAC + 30° = 90°
=> ^BAC = 60°
Vì AD là phân giác của góc BAC.
=> ^DAC = 60°/2 = 30°
Xét tam giác ADC có:
^DAC + ^ACD + ^ADC = 180°
Hay 30° + 30° + ^ADC = 180°
=> ^ADC = 180° - 30° - 30°
=> ^ADC = 120°
b) Xét tam giác ABD và tam giác AED có:
AB = AE ( gt )
^BAD = ^EAD ( Do AD phân giác )
Cạnh AD chung.
=> ∆ABD = ∆AED ( c.g.c )
c) Vì ∆ABD = ∆AED ( cmt )
=> ^ABD = ^AED = 90°
=> DE vuông góc với AC tại E (1)
Ta có: ^DAC = ^DCA = 30°
=> ∆DAC cân tại D.
=> AD = DC
Xét tam giác DEA và tam giác DEC có:
Góc vuông: ^DEA = ^DEC ( = 90° )
Cạnh huyền AD = DC ( cmt )
Góc nhọn: ^DAC = ^DCA ( cmt )
=> ∆DEA = ∆DEC ( g.c.g )
=> AE = EC
=> E là trung điểm của AC. (2)
Từ (1) và (2) => DE là trung trực của AC ( đpcm )
Bài 2:
\(\widehat{ADB}=180^0-80^0=100^0\)
Ta có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=\widehat{ADC}+\widehat{CAD}+\widehat{C}\)
\(\Leftrightarrow\widehat{B}+100^0=\widehat{C}+80^0\)
\(\Leftrightarrow1.5\widehat{C}-\widehat{C}=-20^0\)
\(\Leftrightarrow\widehat{C}=40^0\)
hay \(\widehat{B}=60^0\)
=>\(\widehat{BAC}=80^0\)
a/
Do \(\Delta ABC\) cân\(\widehat{ABC}=\widehat{ACB}\)
\(\widehat{DBC}+\widehat{ABC}=\widehat{DCB}+\widehat{ACB}=90^o\Rightarrow\widehat{DBC}=\widehat{DCB}\Rightarrow\Delta BDC\) cân tại D
b/
Ta có \(\Delta BDC\) cân nên\(BD=CD\)
\(\Delta ABC\) cân nên \(AB=AC\)
\(\Rightarrow\Delta ABD=\Delta ACD\) (Hai tg vuông có các cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{BAD}=\widehat{CAD};\widehat{BDA}=\widehat{CDA}\) => AD là phân giác của \(\widehat{A}\) và \(\widehat{D}\)
c/
Do tg ABC cân tại A và AD là phân giác \(\widehat{A}\) nên AD là đường cao đồng thời là đường trung tuyến thuộc cạnh BC của tg ABC (Trong tg cân đường phân giác đồng thời là đường cao, đường trung tuyến và đường trung trực)
\(\Rightarrow AD\perp BC\) và đi qua trung điểm của BC
Cho tam giác ABC ( AC > AB ) tia phân giác của góc A cắt BC ở D . Gọi I là trung điểm của BC . Đường thẳng qua I vuông góc với AD cắt AB , AC lần lượt tại M và N . Kẻ BE song song với AC (E∈MN)
a) Chứng minh tam giác IBE = tam giác ICN
b) Chứng minh tam giác AMN cân
c) Biết góc BAC = 700 . Tính góc BEN
d) Chứng minh CD > BD
e) Tam giác ABC cần có thêm điều kiện gì để tam giác BME là tam giác đều
GIÚP MÌNH VỚI, MAI NỘP RỒI !!!