K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TC
11 tháng 2 2020
a, Ta thấy :FH\(\perp\)HE
ME\(\perp\)HE
=>FH//ME
=>FHM^=HME^
Xét \(\Delta\)vuông FHM và \(\Delta\)vuông EMH ,có
HM cạnh chung
FHM^=HME^ (cmt)
=>\(\Delta\)FHM =\(\Delta\)EMH (ch-gn)
=>ME=FH (hai cạnh tương ứng)
a, Xét hình tứ giác MEHF. Ta có các góc \(\widehat{MFH}\)\(\widehat{FHE}\),\(\widehat{H}EM\)là góc vuông .Vì vậy MEHF là hình chữ nhật. Suy ra ME=FH
b, Tam giác DBM và FMB là tam giác vuông có chung cạch huyền BM. Vì vậy để chứng minh 2 tam giác bằng nhau ta chỉ cần chứng mình góc \(\widehat{DBM}\)= \(\widehat{BMF}\)?
Thật vậy, theo đề FM//AC=> \(\widehat{BMF}\)=\(\widehat{BCA}\)
Mặt khác \(\Delta ABC\)cân tại A nên \(\widehat{BCA}\)= \(\widehat{DBM}\)
Do vậy góc \(\widehat{DBM}\)= \(\widehat{BMF}\)hay:\(\Delta DBM\)=\(\Delta FMB\)
c. Do \(\Delta DBM\)=\(\Delta FMB\), nên MD = BF.
Đồng thời MFHE là hình chữ nhật nên ME=FH.
Suy ra: MD+ME=BF+FH=BH=const
d. Gọi N là giao điểm của DK và BC. Kẽ đường thẳng từ D song song với AC cắt BC tại O.
Xét \(\Delta NDO\)và \(\Delta NKC\)
Có DO//CK vì vậy \(\widehat{DON}\)=\(\widehat{NCK}\)và \(\widehat{ODN}\)=\(\widehat{CKN}\)
Đồng thời tam giác \(\Delta BDO\)cân tại D, nên BD=DO.
BD=MF do 2 tam giác\(\Delta DBM\)=\(\Delta FMB\)
FM=HE do MEHF là hình chữ nhật,
Theo đề CK=HE nên CK=DO. Suy ra \(\Delta NDO\)= \(\Delta NKC\). Vậy DN=ND hay N là trung điểm của DK