K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2023

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

b: ΔEBC=ΔDCB

=>EB=DC

AE+EB=AB

AD+DC=AC

mà EB=DC và AB=AC

nên AE=AD

Xét ΔABC có AE/AB=AD/AC

nên ED//BC

Xét tứ giác BEDC có ED//BC

nên BEDC là hình thang

Hình thang BEDC có \(\widehat{EBC}=\widehat{DCB}\)

nên BEDC là hình thang cân

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

b: góc BEC=góc BDC=90 độ

=>BEDC nội tiếp

=>góc EDC+góc EBC=180 độ

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc BAD chung

Do đó: ΔABD∼ΔACE

Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)

b: XétΔADE và ΔABC có

AD/AB=AE/AC
góc DAE chung

Do đó: ΔADE∼ΔABC

12 tháng 3 2016

Thiếu đề rồi bạn ơi, tại sao lại có BD và CE?

4 tháng 6 2021

A B C H D E

a, Xét tam giác AHB và tam giác CHA ta có : 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác AHB ~ tam giác CHA ( g.g )

4 tháng 6 2021

b, Xét tam giác AEB và tam giác DAB ta có 

^AEB = ^DAB = 900

^B _ chung 

Vậy tam giác AEB ~ tam giác DAB ( g.g )

a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có

\(\widehat{N}\) chung

Do đó: ΔKNM~ΔMNP

Xét ΔMNP vuông tại M và ΔKMP vuông tại K có

\(\widehat{P}\) chung

Do đó: ΔMNP~ΔKMP

=>ΔKNM~ΔMNP~ΔKMP

b: Ta có: ΔKNM~ΔKMP

=>\(\dfrac{KN}{KM}=\dfrac{KM}{KP}\)

=>\(KM^2=KN\cdot KP\)

c: ta có: NP=NK+KP

=4+9

=13(cm)

Ta có: \(KM^2=KN\cdot KP\)

=>\(KM^2=4\cdot9=36\)

=>\(KM=\sqrt{36}=6\left(cm\right)\)

Xét ΔMNP vuông tại M có MK là đường cao

nên \(S_{MNP}=\dfrac{1}{2}\cdot MK\cdot PN=\dfrac{1}{2}\cdot6\cdot13=39\left(cm^2\right)\)

a: Xét ΔKNM vuông tại K và ΔMNP vuông tại M có

góc N chung

=>ΔKNM đồng dạng với ΔMNP

Xét ΔKMP vuông tại K và ΔMNP vuông tại M có

góc P chung

=>ΔKMP đồng dạng với ΔMNP

b: ΔKNM đồng dạng với ΔKMP

=>KN/KM=KM/KP

=>KM^2=KN*KP

c: \(MK=\sqrt{4\cdot9}=6\left(cm\right)\)

\(S_{MNP}=\dfrac{1}{2}\cdot6\cdot13=3\cdot13=39\left(cm^2\right)\)